Loading…
Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase
The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in...
Saved in:
Published in: | Bioconjugate chemistry 2017-09, Vol.28 (9), p.2471-2484 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3 |
container_end_page | 2484 |
container_issue | 9 |
container_start_page | 2471 |
container_title | Bioconjugate chemistry |
container_volume | 28 |
creator | Spidel, Jared L Vaessen, Benjamin Albone, Earl F Cheng, Xin Verdi, Arielle Kline, J. Bradford |
description | The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates. |
doi_str_mv | 10.1021/acs.bioconjchem.7b00439 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956034571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956034571</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</originalsourceid><addsrcrecordid>eNqFkMlOwzAURS0EYv4FsMQ65XlK4iWqmKQCi5Z1ZDtOcZXYJU6Q-vcYtQw7Vr6y7jvv6SB0SWBCgJJrZeJEu2CCX5k3200KDcCZ3EPHRFDIeEnofsrpLyMl0CN0EuMKACQp6SE6omVJQRTyGL3P3WCz-doa1ziDpwk4LtXggsdDwM8pfVisfI1v_dJ5a3tb49kmphix8_hh7JTHj103-rBsgx5b5yPWG_zkTB-0Uy1e9MrHZTsOqnNeRXuGDhrVRnu-e0_R693tYvqQzV7uH6c3s0xxQYaM8ZxwrkAD1aIBQnOlpZQM8sIYYLVUjSzKuiDC5MxSlZc10YxTJjjJC2HYKbractd9eB9tHKpVGHufVlZEihwYFwVJrWLbSufG2NumWveuU_2mIlB9qa6S6uqP6mqnOk1e7Pij7mz9M_ftNhXYtvBF-N39D_YTKvaQ2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956034571</pqid></control><display><type>article</type><title>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Spidel, Jared L ; Vaessen, Benjamin ; Albone, Earl F ; Cheng, Xin ; Verdi, Arielle ; Kline, J. Bradford</creator><creatorcontrib>Spidel, Jared L ; Vaessen, Benjamin ; Albone, Earl F ; Cheng, Xin ; Verdi, Arielle ; Kline, J. Bradford</creatorcontrib><description>The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00439</identifier><identifier>PMID: 28820579</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acids ; Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Carboxypeptidase B ; Cleavage ; Conjugation ; Glutamine ; HEK293 Cells ; Humans ; Immunoconjugates - chemistry ; Immunoconjugates - genetics ; Immunoconjugates - metabolism ; Immunoglobulin G ; Immunoglobulin G - chemistry ; Immunoglobulin G - genetics ; Immunoglobulin G - metabolism ; Immunoglobulins ; Lymphocytes B ; Lysine ; Lysine - chemistry ; Lysine - genetics ; Lysine - metabolism ; Microorganisms ; Models, Molecular ; Monoclonal antibodies ; Mutagenesis ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Engineering ; Residues ; Scanning mutagenesis ; Streptomyces - enzymology ; Substrate Specificity ; Substrates ; Transglutaminases - metabolism</subject><ispartof>Bioconjugate chemistry, 2017-09, Vol.28 (9), p.2471-2484</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 20, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</citedby><cites>FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</cites><orcidid>0000-0001-8397-3091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28820579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spidel, Jared L</creatorcontrib><creatorcontrib>Vaessen, Benjamin</creatorcontrib><creatorcontrib>Albone, Earl F</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Verdi, Arielle</creatorcontrib><creatorcontrib>Kline, J. Bradford</creatorcontrib><title>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.</description><subject>Acids</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Carboxypeptidase B</subject><subject>Cleavage</subject><subject>Conjugation</subject><subject>Glutamine</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoconjugates - chemistry</subject><subject>Immunoconjugates - genetics</subject><subject>Immunoconjugates - metabolism</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - chemistry</subject><subject>Immunoglobulin G - genetics</subject><subject>Immunoglobulin G - metabolism</subject><subject>Immunoglobulins</subject><subject>Lymphocytes B</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>Microorganisms</subject><subject>Models, Molecular</subject><subject>Monoclonal antibodies</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Residues</subject><subject>Scanning mutagenesis</subject><subject>Streptomyces - enzymology</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Transglutaminases - metabolism</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAURS0EYv4FsMQ65XlK4iWqmKQCi5Z1ZDtOcZXYJU6Q-vcYtQw7Vr6y7jvv6SB0SWBCgJJrZeJEu2CCX5k3200KDcCZ3EPHRFDIeEnofsrpLyMl0CN0EuMKACQp6SE6omVJQRTyGL3P3WCz-doa1ziDpwk4LtXggsdDwM8pfVisfI1v_dJ5a3tb49kmphix8_hh7JTHj103-rBsgx5b5yPWG_zkTB-0Uy1e9MrHZTsOqnNeRXuGDhrVRnu-e0_R693tYvqQzV7uH6c3s0xxQYaM8ZxwrkAD1aIBQnOlpZQM8sIYYLVUjSzKuiDC5MxSlZc10YxTJjjJC2HYKbractd9eB9tHKpVGHufVlZEihwYFwVJrWLbSufG2NumWveuU_2mIlB9qa6S6uqP6mqnOk1e7Pij7mz9M_ftNhXYtvBF-N39D_YTKvaQ2A</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Spidel, Jared L</creator><creator>Vaessen, Benjamin</creator><creator>Albone, Earl F</creator><creator>Cheng, Xin</creator><creator>Verdi, Arielle</creator><creator>Kline, J. Bradford</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-8397-3091</orcidid></search><sort><creationdate>20170920</creationdate><title>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</title><author>Spidel, Jared L ; Vaessen, Benjamin ; Albone, Earl F ; Cheng, Xin ; Verdi, Arielle ; Kline, J. Bradford</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Carboxypeptidase B</topic><topic>Cleavage</topic><topic>Conjugation</topic><topic>Glutamine</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoconjugates - chemistry</topic><topic>Immunoconjugates - genetics</topic><topic>Immunoconjugates - metabolism</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - chemistry</topic><topic>Immunoglobulin G - genetics</topic><topic>Immunoglobulin G - metabolism</topic><topic>Immunoglobulins</topic><topic>Lymphocytes B</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>Microorganisms</topic><topic>Models, Molecular</topic><topic>Monoclonal antibodies</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Residues</topic><topic>Scanning mutagenesis</topic><topic>Streptomyces - enzymology</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Transglutaminases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spidel, Jared L</creatorcontrib><creatorcontrib>Vaessen, Benjamin</creatorcontrib><creatorcontrib>Albone, Earl F</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Verdi, Arielle</creatorcontrib><creatorcontrib>Kline, J. Bradford</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spidel, Jared L</au><au>Vaessen, Benjamin</au><au>Albone, Earl F</au><au>Cheng, Xin</au><au>Verdi, Arielle</au><au>Kline, J. Bradford</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2017-09-20</date><risdate>2017</risdate><volume>28</volume><issue>9</issue><spage>2471</spage><epage>2484</epage><pages>2471-2484</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28820579</pmid><doi>10.1021/acs.bioconjchem.7b00439</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8397-3091</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2017-09, Vol.28 (9), p.2471-2484 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_proquest_journals_1956034571 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acids Amino Acid Sequence Amino Acid Substitution Amino acids Carboxypeptidase B Cleavage Conjugation Glutamine HEK293 Cells Humans Immunoconjugates - chemistry Immunoconjugates - genetics Immunoconjugates - metabolism Immunoglobulin G Immunoglobulin G - chemistry Immunoglobulin G - genetics Immunoglobulin G - metabolism Immunoglobulins Lymphocytes B Lysine Lysine - chemistry Lysine - genetics Lysine - metabolism Microorganisms Models, Molecular Monoclonal antibodies Mutagenesis Mutagenesis, Site-Directed Protein Conformation Protein Engineering Residues Scanning mutagenesis Streptomyces - enzymology Substrate Specificity Substrates Transglutaminases - metabolism |
title | Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Specific%20Conjugation%20to%20Native%20and%20Engineered%20Lysines%20in%20Human%20Immunoglobulins%20by%20Microbial%20Transglutaminase&rft.jtitle=Bioconjugate%20chemistry&rft.au=Spidel,%20Jared%20L&rft.date=2017-09-20&rft.volume=28&rft.issue=9&rft.spage=2471&rft.epage=2484&rft.pages=2471-2484&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00439&rft_dat=%3Cproquest_cross%3E1956034571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956034571&rft_id=info:pmid/28820579&rfr_iscdi=true |