Loading…

Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase

The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2017-09, Vol.28 (9), p.2471-2484
Main Authors: Spidel, Jared L, Vaessen, Benjamin, Albone, Earl F, Cheng, Xin, Verdi, Arielle, Kline, J. Bradford
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3
cites cdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3
container_end_page 2484
container_issue 9
container_start_page 2471
container_title Bioconjugate chemistry
container_volume 28
creator Spidel, Jared L
Vaessen, Benjamin
Albone, Earl F
Cheng, Xin
Verdi, Arielle
Kline, J. Bradford
description The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.
doi_str_mv 10.1021/acs.bioconjchem.7b00439
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956034571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956034571</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</originalsourceid><addsrcrecordid>eNqFkMlOwzAURS0EYv4FsMQ65XlK4iWqmKQCi5Z1ZDtOcZXYJU6Q-vcYtQw7Vr6y7jvv6SB0SWBCgJJrZeJEu2CCX5k3200KDcCZ3EPHRFDIeEnofsrpLyMl0CN0EuMKACQp6SE6omVJQRTyGL3P3WCz-doa1ziDpwk4LtXggsdDwM8pfVisfI1v_dJ5a3tb49kmphix8_hh7JTHj103-rBsgx5b5yPWG_zkTB-0Uy1e9MrHZTsOqnNeRXuGDhrVRnu-e0_R693tYvqQzV7uH6c3s0xxQYaM8ZxwrkAD1aIBQnOlpZQM8sIYYLVUjSzKuiDC5MxSlZc10YxTJjjJC2HYKbractd9eB9tHKpVGHufVlZEihwYFwVJrWLbSufG2NumWveuU_2mIlB9qa6S6uqP6mqnOk1e7Pij7mz9M_ftNhXYtvBF-N39D_YTKvaQ2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956034571</pqid></control><display><type>article</type><title>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Spidel, Jared L ; Vaessen, Benjamin ; Albone, Earl F ; Cheng, Xin ; Verdi, Arielle ; Kline, J. Bradford</creator><creatorcontrib>Spidel, Jared L ; Vaessen, Benjamin ; Albone, Earl F ; Cheng, Xin ; Verdi, Arielle ; Kline, J. Bradford</creatorcontrib><description>The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00439</identifier><identifier>PMID: 28820579</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acids ; Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Carboxypeptidase B ; Cleavage ; Conjugation ; Glutamine ; HEK293 Cells ; Humans ; Immunoconjugates - chemistry ; Immunoconjugates - genetics ; Immunoconjugates - metabolism ; Immunoglobulin G ; Immunoglobulin G - chemistry ; Immunoglobulin G - genetics ; Immunoglobulin G - metabolism ; Immunoglobulins ; Lymphocytes B ; Lysine ; Lysine - chemistry ; Lysine - genetics ; Lysine - metabolism ; Microorganisms ; Models, Molecular ; Monoclonal antibodies ; Mutagenesis ; Mutagenesis, Site-Directed ; Protein Conformation ; Protein Engineering ; Residues ; Scanning mutagenesis ; Streptomyces - enzymology ; Substrate Specificity ; Substrates ; Transglutaminases - metabolism</subject><ispartof>Bioconjugate chemistry, 2017-09, Vol.28 (9), p.2471-2484</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 20, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</citedby><cites>FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</cites><orcidid>0000-0001-8397-3091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28820579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spidel, Jared L</creatorcontrib><creatorcontrib>Vaessen, Benjamin</creatorcontrib><creatorcontrib>Albone, Earl F</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Verdi, Arielle</creatorcontrib><creatorcontrib>Kline, J. Bradford</creatorcontrib><title>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.</description><subject>Acids</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Carboxypeptidase B</subject><subject>Cleavage</subject><subject>Conjugation</subject><subject>Glutamine</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoconjugates - chemistry</subject><subject>Immunoconjugates - genetics</subject><subject>Immunoconjugates - metabolism</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - chemistry</subject><subject>Immunoglobulin G - genetics</subject><subject>Immunoglobulin G - metabolism</subject><subject>Immunoglobulins</subject><subject>Lymphocytes B</subject><subject>Lysine</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>Microorganisms</subject><subject>Models, Molecular</subject><subject>Monoclonal antibodies</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Residues</subject><subject>Scanning mutagenesis</subject><subject>Streptomyces - enzymology</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Transglutaminases - metabolism</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAURS0EYv4FsMQ65XlK4iWqmKQCi5Z1ZDtOcZXYJU6Q-vcYtQw7Vr6y7jvv6SB0SWBCgJJrZeJEu2CCX5k3200KDcCZ3EPHRFDIeEnofsrpLyMl0CN0EuMKACQp6SE6omVJQRTyGL3P3WCz-doa1ziDpwk4LtXggsdDwM8pfVisfI1v_dJ5a3tb49kmphix8_hh7JTHj103-rBsgx5b5yPWG_zkTB-0Uy1e9MrHZTsOqnNeRXuGDhrVRnu-e0_R693tYvqQzV7uH6c3s0xxQYaM8ZxwrkAD1aIBQnOlpZQM8sIYYLVUjSzKuiDC5MxSlZc10YxTJjjJC2HYKbractd9eB9tHKpVGHufVlZEihwYFwVJrWLbSufG2NumWveuU_2mIlB9qa6S6uqP6mqnOk1e7Pij7mz9M_ftNhXYtvBF-N39D_YTKvaQ2A</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Spidel, Jared L</creator><creator>Vaessen, Benjamin</creator><creator>Albone, Earl F</creator><creator>Cheng, Xin</creator><creator>Verdi, Arielle</creator><creator>Kline, J. Bradford</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-8397-3091</orcidid></search><sort><creationdate>20170920</creationdate><title>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</title><author>Spidel, Jared L ; Vaessen, Benjamin ; Albone, Earl F ; Cheng, Xin ; Verdi, Arielle ; Kline, J. Bradford</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Carboxypeptidase B</topic><topic>Cleavage</topic><topic>Conjugation</topic><topic>Glutamine</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoconjugates - chemistry</topic><topic>Immunoconjugates - genetics</topic><topic>Immunoconjugates - metabolism</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - chemistry</topic><topic>Immunoglobulin G - genetics</topic><topic>Immunoglobulin G - metabolism</topic><topic>Immunoglobulins</topic><topic>Lymphocytes B</topic><topic>Lysine</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>Microorganisms</topic><topic>Models, Molecular</topic><topic>Monoclonal antibodies</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Residues</topic><topic>Scanning mutagenesis</topic><topic>Streptomyces - enzymology</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Transglutaminases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spidel, Jared L</creatorcontrib><creatorcontrib>Vaessen, Benjamin</creatorcontrib><creatorcontrib>Albone, Earl F</creatorcontrib><creatorcontrib>Cheng, Xin</creatorcontrib><creatorcontrib>Verdi, Arielle</creatorcontrib><creatorcontrib>Kline, J. Bradford</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spidel, Jared L</au><au>Vaessen, Benjamin</au><au>Albone, Earl F</au><au>Cheng, Xin</au><au>Verdi, Arielle</au><au>Kline, J. Bradford</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2017-09-20</date><risdate>2017</risdate><volume>28</volume><issue>9</issue><spage>2471</spage><epage>2484</epage><pages>2471-2484</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The use of microbial transglutaminase (MTG) to produce site-specific antibody–drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab′ fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28820579</pmid><doi>10.1021/acs.bioconjchem.7b00439</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8397-3091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2017-09, Vol.28 (9), p.2471-2484
issn 1043-1802
1520-4812
language eng
recordid cdi_proquest_journals_1956034571
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acids
Amino Acid Sequence
Amino Acid Substitution
Amino acids
Carboxypeptidase B
Cleavage
Conjugation
Glutamine
HEK293 Cells
Humans
Immunoconjugates - chemistry
Immunoconjugates - genetics
Immunoconjugates - metabolism
Immunoglobulin G
Immunoglobulin G - chemistry
Immunoglobulin G - genetics
Immunoglobulin G - metabolism
Immunoglobulins
Lymphocytes B
Lysine
Lysine - chemistry
Lysine - genetics
Lysine - metabolism
Microorganisms
Models, Molecular
Monoclonal antibodies
Mutagenesis
Mutagenesis, Site-Directed
Protein Conformation
Protein Engineering
Residues
Scanning mutagenesis
Streptomyces - enzymology
Substrate Specificity
Substrates
Transglutaminases - metabolism
title Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-Specific%20Conjugation%20to%20Native%20and%20Engineered%20Lysines%20in%20Human%20Immunoglobulins%20by%20Microbial%20Transglutaminase&rft.jtitle=Bioconjugate%20chemistry&rft.au=Spidel,%20Jared%20L&rft.date=2017-09-20&rft.volume=28&rft.issue=9&rft.spage=2471&rft.epage=2484&rft.pages=2471-2484&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00439&rft_dat=%3Cproquest_cross%3E1956034571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a451t-346144a0b02b5f0126ab9993067cc03d9af978d715c63e2a68d1b3423541675c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956034571&rft_id=info:pmid/28820579&rfr_iscdi=true