Loading…

Reactivity of Nitroalkyl Anions Addition to Substituted Benzylidenecyanoacetates: Electrophilicity Parameters and Free Energy Relationships

ABSTRACT The kinetics of the reactions of benzylidenecyanoacetates 1a–d (X = H, Me, OMe, and NMe2) with nitroalkyl anions 2a–c have been studied in aqueous solution at 20°C. The second‐order rate constants are used to evaluate the electrophilicity parameter E of these series of Michael acceptors 1a–...

Full description

Saved in:
Bibliographic Details
Published in:International journal of chemical kinetics 2017-12, Vol.49 (12), p.847-858
Main Authors: Azaiez, K., Dhahri, N., Boubaker, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The kinetics of the reactions of benzylidenecyanoacetates 1a–d (X = H, Me, OMe, and NMe2) with nitroalkyl anions 2a–c have been studied in aqueous solution at 20°C. The second‐order rate constants are used to evaluate the electrophilicity parameter E of these series of Michael acceptors 1a–d according to the linear free enthalpy relationship log k (20°C) = sN (E + N). The measured E values were found to cover a domain of reactivity, ranging from −10.07 for the most reactive electrophile 1a (X = H) to −14.04 for the less electrophile 1d (X = NMe2). Mayr's approach was found to correctly predict the rate constants for the reactions of these series of olefins 1a–d with the hydroxide ion in water and 50% water–50% acetonitrile at 20°C. Analysis of the kinetic measurements using the Brönsted relationship shows that βnuc values remain remarkably constant for changes in the nature of the substituent X. A notable finding of this work is perhaps provided by the observed large changes in the electrophilicity parameter E on going from benzylidenecyanoacetates 1 to their analogues benzylidenemalonates 3 (ΔE ∼ 9.06–10.48), whereas the replacement of second CO2Et group by the CN group in 1 to give benzylidenemalononitriles 4 has little effect on electrophilic reactivity, i.e., ΔE ∼ 0.65–0.95. This abnormal pattern in the E values has been attributed to the resonance interaction and salvation effects. On the other hand, the effect of benzylidenecyanoacetate substituents on the electrophilic reactivity was examined quantitatively on the basis of the electrophilicity parameter E, leading to linear correlation of E with Hammett–Brown substituent constants (σp+). More importantly, the four electrophiles have comparable log ko values, which are located at a relatively low level, i.e., log ko ≤ 4–5, in the intrinsic reactivity scale.
ISSN:0538-8066
1097-4601
DOI:10.1002/kin.21132