Loading…

Magnetoconductivity of the La1– x Sr x MnO3@TiO2 Nanocomposite

This paper deals with tunneling magnetoresistance in a composite system of the so-called 0-3 connectivity, in which ferromagnetic (FM) metallic nanoparticles La1-xSrxMnO3 (0-D objects) are embedded in the (3-D) insulating matrix of TiO2. The sample fabrication included the sol-gel preparation of man...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2017-01, Vol.53 (11), p.1
Main Authors: Koktan, Jakub, Goglio, Graziella, Hejtmanek, Jiri, Jirak, Zdenek, Knizek, Karel, Kulickova, Jarmila, Marysko, Miroslav, Kaman, Ondrej
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 53
creator Koktan, Jakub
Goglio, Graziella
Hejtmanek, Jiri
Jirak, Zdenek
Knizek, Karel
Kulickova, Jarmila
Marysko, Miroslav
Kaman, Ondrej
description This paper deals with tunneling magnetoresistance in a composite system of the so-called 0-3 connectivity, in which ferromagnetic (FM) metallic nanoparticles La1-xSrxMnO3 (0-D objects) are embedded in the (3-D) insulating matrix of TiO2. The sample fabrication included the sol-gel preparation of manganite particles of the x = 0.35 composition and 25 nm mean crystallite size, their coating by TiO2, and compacting the products by spark plasma sintering (SPS). A comparative nanogranular sample was prepared by SPS of bare manganite particles. The resistivities of the composite and comparative samples are 100 000 and 100 times higher compared to those of bulk metallic La1-xSrxMnO3. Otherwise, the temperature dependence observed in the nanogranular La1-xSrxMnO3 sample is similar to single crystal data, and marked localization is absent also in the La1-xSrxMnO3@TiO2 nanocomposite. The data taken in applied fields up to 4 T reveal effects typical for grain-boundary tunneling in manganites, namely, the coexistence of the low-field magnetoconductance (LFMC), reflecting the field-induced alignment of FM cores, and high-field linear magnetoconductance (HFMC) that is generally ascribed to the effect of spin canting at localized Mn4+ sites in the interface. This is considered as a signature for resonant tunneling of spin-polarized carriers, theoretically treated by Lee et al [1]. The present results show that the total extent of LFMC makes 45% in the La1-xSrxMnO3@TiO2 nanocomposite and 21% in the La1-xSrxMnO3 nanogranular sample. The slope of HFMC has been determined to 5.4% and 4.9% per Tesla, respectively. The large LFMC effect observed in the nanocomposite exceeds the theoretical prediction of 33% for the second-order tunneling, which might suggest for higher order tunneling via resonant states.
doi_str_mv 10.1109/TMAG.2017.2735191
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1956425695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956425695</sourcerecordid><originalsourceid>FETCH-proquest_journals_19564256953</originalsourceid><addsrcrecordid>eNqNirsOgjAYRhujiXh5ALcmzmB_aMFuGONlEB1kNwSLQrRFWoxuvoNv6JPI4AO4nC8n30FoBMQBIHwSR7OV4xIIHDfwGHBoIQs4BZsQn7eRRQhMbU592kU9rYtGKQNioTBKTlIYlSp5rFOT33PzxCrD5izwJoHP640feF81iOTOC-N85-JtIpv-WiqdGzFAnSy5aDH8bR-Nl4t4vrbLSt1qoc2hUHUlm-sAnPnUZT5n3n_VF3QEP2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956425695</pqid></control><display><type>article</type><title>Magnetoconductivity of the La1– x Sr x MnO3@TiO2 Nanocomposite</title><source>IEEE Xplore (Online service)</source><creator>Koktan, Jakub ; Goglio, Graziella ; Hejtmanek, Jiri ; Jirak, Zdenek ; Knizek, Karel ; Kulickova, Jarmila ; Marysko, Miroslav ; Kaman, Ondrej</creator><creatorcontrib>Koktan, Jakub ; Goglio, Graziella ; Hejtmanek, Jiri ; Jirak, Zdenek ; Knizek, Karel ; Kulickova, Jarmila ; Marysko, Miroslav ; Kaman, Ondrej</creatorcontrib><description>This paper deals with tunneling magnetoresistance in a composite system of the so-called 0-3 connectivity, in which ferromagnetic (FM) metallic nanoparticles La1-xSrxMnO3 (0-D objects) are embedded in the (3-D) insulating matrix of TiO2. The sample fabrication included the sol-gel preparation of manganite particles of the x = 0.35 composition and 25 nm mean crystallite size, their coating by TiO2, and compacting the products by spark plasma sintering (SPS). A comparative nanogranular sample was prepared by SPS of bare manganite particles. The resistivities of the composite and comparative samples are 100 000 and 100 times higher compared to those of bulk metallic La1-xSrxMnO3. Otherwise, the temperature dependence observed in the nanogranular La1-xSrxMnO3 sample is similar to single crystal data, and marked localization is absent also in the La1-xSrxMnO3@TiO2 nanocomposite. The data taken in applied fields up to 4 T reveal effects typical for grain-boundary tunneling in manganites, namely, the coexistence of the low-field magnetoconductance (LFMC), reflecting the field-induced alignment of FM cores, and high-field linear magnetoconductance (HFMC) that is generally ascribed to the effect of spin canting at localized Mn4+ sites in the interface. This is considered as a signature for resonant tunneling of spin-polarized carriers, theoretically treated by Lee et al [1]. The present results show that the total extent of LFMC makes 45% in the La1-xSrxMnO3@TiO2 nanocomposite and 21% in the La1-xSrxMnO3 nanogranular sample. The slope of HFMC has been determined to 5.4% and 4.9% per Tesla, respectively. The large LFMC effect observed in the nanocomposite exceeds the theoretical prediction of 33% for the second-order tunneling, which might suggest for higher order tunneling via resonant states.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2735191</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Compacting ; Conductivity ; Ferromagnetism ; Magnetic fields ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Manganites ; Nanocomposites ; Particulate composites ; Plasma sintering ; Resonant tunneling ; Sol-gel processes ; Spark plasma sintering ; Strontium ; Temperature dependence ; Titanium dioxide ; Titanium oxides</subject><ispartof>IEEE transactions on magnetics, 2017-01, Vol.53 (11), p.1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Koktan, Jakub</creatorcontrib><creatorcontrib>Goglio, Graziella</creatorcontrib><creatorcontrib>Hejtmanek, Jiri</creatorcontrib><creatorcontrib>Jirak, Zdenek</creatorcontrib><creatorcontrib>Knizek, Karel</creatorcontrib><creatorcontrib>Kulickova, Jarmila</creatorcontrib><creatorcontrib>Marysko, Miroslav</creatorcontrib><creatorcontrib>Kaman, Ondrej</creatorcontrib><title>Magnetoconductivity of the La1– x Sr x MnO3@TiO2 Nanocomposite</title><title>IEEE transactions on magnetics</title><description>This paper deals with tunneling magnetoresistance in a composite system of the so-called 0-3 connectivity, in which ferromagnetic (FM) metallic nanoparticles La1-xSrxMnO3 (0-D objects) are embedded in the (3-D) insulating matrix of TiO2. The sample fabrication included the sol-gel preparation of manganite particles of the x = 0.35 composition and 25 nm mean crystallite size, their coating by TiO2, and compacting the products by spark plasma sintering (SPS). A comparative nanogranular sample was prepared by SPS of bare manganite particles. The resistivities of the composite and comparative samples are 100 000 and 100 times higher compared to those of bulk metallic La1-xSrxMnO3. Otherwise, the temperature dependence observed in the nanogranular La1-xSrxMnO3 sample is similar to single crystal data, and marked localization is absent also in the La1-xSrxMnO3@TiO2 nanocomposite. The data taken in applied fields up to 4 T reveal effects typical for grain-boundary tunneling in manganites, namely, the coexistence of the low-field magnetoconductance (LFMC), reflecting the field-induced alignment of FM cores, and high-field linear magnetoconductance (HFMC) that is generally ascribed to the effect of spin canting at localized Mn4+ sites in the interface. This is considered as a signature for resonant tunneling of spin-polarized carriers, theoretically treated by Lee et al [1]. The present results show that the total extent of LFMC makes 45% in the La1-xSrxMnO3@TiO2 nanocomposite and 21% in the La1-xSrxMnO3 nanogranular sample. The slope of HFMC has been determined to 5.4% and 4.9% per Tesla, respectively. The large LFMC effect observed in the nanocomposite exceeds the theoretical prediction of 33% for the second-order tunneling, which might suggest for higher order tunneling via resonant states.</description><subject>Compacting</subject><subject>Conductivity</subject><subject>Ferromagnetism</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Manganites</subject><subject>Nanocomposites</subject><subject>Particulate composites</subject><subject>Plasma sintering</subject><subject>Resonant tunneling</subject><subject>Sol-gel processes</subject><subject>Spark plasma sintering</subject><subject>Strontium</subject><subject>Temperature dependence</subject><subject>Titanium dioxide</subject><subject>Titanium oxides</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNirsOgjAYRhujiXh5ALcmzmB_aMFuGONlEB1kNwSLQrRFWoxuvoNv6JPI4AO4nC8n30FoBMQBIHwSR7OV4xIIHDfwGHBoIQs4BZsQn7eRRQhMbU592kU9rYtGKQNioTBKTlIYlSp5rFOT33PzxCrD5izwJoHP640feF81iOTOC-N85-JtIpv-WiqdGzFAnSy5aDH8bR-Nl4t4vrbLSt1qoc2hUHUlm-sAnPnUZT5n3n_VF3QEP2s</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Koktan, Jakub</creator><creator>Goglio, Graziella</creator><creator>Hejtmanek, Jiri</creator><creator>Jirak, Zdenek</creator><creator>Knizek, Karel</creator><creator>Kulickova, Jarmila</creator><creator>Marysko, Miroslav</creator><creator>Kaman, Ondrej</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Magnetoconductivity of the La1– x Sr x MnO3@TiO2 Nanocomposite</title><author>Koktan, Jakub ; Goglio, Graziella ; Hejtmanek, Jiri ; Jirak, Zdenek ; Knizek, Karel ; Kulickova, Jarmila ; Marysko, Miroslav ; Kaman, Ondrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19564256953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compacting</topic><topic>Conductivity</topic><topic>Ferromagnetism</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Manganites</topic><topic>Nanocomposites</topic><topic>Particulate composites</topic><topic>Plasma sintering</topic><topic>Resonant tunneling</topic><topic>Sol-gel processes</topic><topic>Spark plasma sintering</topic><topic>Strontium</topic><topic>Temperature dependence</topic><topic>Titanium dioxide</topic><topic>Titanium oxides</topic><toplevel>online_resources</toplevel><creatorcontrib>Koktan, Jakub</creatorcontrib><creatorcontrib>Goglio, Graziella</creatorcontrib><creatorcontrib>Hejtmanek, Jiri</creatorcontrib><creatorcontrib>Jirak, Zdenek</creatorcontrib><creatorcontrib>Knizek, Karel</creatorcontrib><creatorcontrib>Kulickova, Jarmila</creatorcontrib><creatorcontrib>Marysko, Miroslav</creatorcontrib><creatorcontrib>Kaman, Ondrej</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koktan, Jakub</au><au>Goglio, Graziella</au><au>Hejtmanek, Jiri</au><au>Jirak, Zdenek</au><au>Knizek, Karel</au><au>Kulickova, Jarmila</au><au>Marysko, Miroslav</au><au>Kaman, Ondrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoconductivity of the La1– x Sr x MnO3@TiO2 Nanocomposite</atitle><jtitle>IEEE transactions on magnetics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>53</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><abstract>This paper deals with tunneling magnetoresistance in a composite system of the so-called 0-3 connectivity, in which ferromagnetic (FM) metallic nanoparticles La1-xSrxMnO3 (0-D objects) are embedded in the (3-D) insulating matrix of TiO2. The sample fabrication included the sol-gel preparation of manganite particles of the x = 0.35 composition and 25 nm mean crystallite size, their coating by TiO2, and compacting the products by spark plasma sintering (SPS). A comparative nanogranular sample was prepared by SPS of bare manganite particles. The resistivities of the composite and comparative samples are 100 000 and 100 times higher compared to those of bulk metallic La1-xSrxMnO3. Otherwise, the temperature dependence observed in the nanogranular La1-xSrxMnO3 sample is similar to single crystal data, and marked localization is absent also in the La1-xSrxMnO3@TiO2 nanocomposite. The data taken in applied fields up to 4 T reveal effects typical for grain-boundary tunneling in manganites, namely, the coexistence of the low-field magnetoconductance (LFMC), reflecting the field-induced alignment of FM cores, and high-field linear magnetoconductance (HFMC) that is generally ascribed to the effect of spin canting at localized Mn4+ sites in the interface. This is considered as a signature for resonant tunneling of spin-polarized carriers, theoretically treated by Lee et al [1]. The present results show that the total extent of LFMC makes 45% in the La1-xSrxMnO3@TiO2 nanocomposite and 21% in the La1-xSrxMnO3 nanogranular sample. The slope of HFMC has been determined to 5.4% and 4.9% per Tesla, respectively. The large LFMC effect observed in the nanocomposite exceeds the theoretical prediction of 33% for the second-order tunneling, which might suggest for higher order tunneling via resonant states.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TMAG.2017.2735191</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2017-01, Vol.53 (11), p.1
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_1956425695
source IEEE Xplore (Online service)
subjects Compacting
Conductivity
Ferromagnetism
Magnetic fields
Magnetism
Magnetoresistance
Magnetoresistivity
Manganites
Nanocomposites
Particulate composites
Plasma sintering
Resonant tunneling
Sol-gel processes
Spark plasma sintering
Strontium
Temperature dependence
Titanium dioxide
Titanium oxides
title Magnetoconductivity of the La1– x Sr x MnO3@TiO2 Nanocomposite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoconductivity%20of%20the%20La1%E2%80%93%20x%20Sr%20x%20MnO3@TiO2%20Nanocomposite&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Koktan,%20Jakub&rft.date=2017-01-01&rft.volume=53&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=0018-9464&rft.eissn=1941-0069&rft_id=info:doi/10.1109/TMAG.2017.2735191&rft_dat=%3Cproquest%3E1956425695%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_19564256953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956425695&rft_id=info:pmid/&rfr_iscdi=true