Loading…
Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques
Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical mode...
Saved in:
Published in: | IEEE journal of photovoltaics 2017-11, Vol.7 (6), p.1556-1562 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53 |
container_end_page | 1562 |
container_issue | 6 |
container_start_page | 1556 |
container_title | IEEE journal of photovoltaics |
container_volume | 7 |
creator | Rahman, Tasmiat Boden, Stuart A. |
description | Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering. |
doi_str_mv | 10.1109/JPHOTOV.2017.2748900 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956426970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8049457</ieee_id><sourcerecordid>1956426970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOHSfQB8CPnfe_GnaPOqYbjKpuM3XkKWpZsZmJp3ot7dl0wuXe7mccw_8kuQSwwhjENcPT9NyWb6MCOB8RHJWCICjZEBwxlPKgB7_7bTAp8kwxg10xSHjnA2S53LbWq0cevSVcbZ5Rb5Gt07pd7SwzmrfoNoHtPBOBTQ2zkW0ir1sUtdGt_bLoFlTmW-0NPqtsZ87E8-Tk1q5aIaHeZas7ibL8TSdl_ez8c081YyTNiXMCCxYDqCgYrqggtCcVIVSAgrBQVBiaE1p14xUYCDHBav0mqyz7q4yepZc7f9ug-9zW7nxu9B0kRKLjDPCRQ6diu1VOvgYg6nlNtgPFX4kBtkDlAeAsgcoDwA728XeZo0x_5YCmGBZTn8BFatq8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956426970</pqid></control><display><type>article</type><title>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</title><source>IEEE Xplore (Online service)</source><creator>Rahman, Tasmiat ; Boden, Stuart A.</creator><creatorcontrib>Rahman, Tasmiat ; Boden, Stuart A.</creatorcontrib><description>Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2017.2748900</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Black Si ; effective medium ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; finite-difference time domain (FDTD) ; Mathematical models ; Multiscale analysis ; nanoscale ; Nanoscale devices ; Numerical methods ; optics ; Photovoltaic cells ; Ray tracing ; ray-tracing (RT) ; Silicon ; Solar cells ; Texturing ; Time domain analysis ; transfer matrix method (TMM)</subject><ispartof>IEEE journal of photovoltaics, 2017-11, Vol.7 (6), p.1556-1562</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</citedby><cites>FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</cites><orcidid>0000-0001-8955-0233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8049457$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><title>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.</description><subject>Accuracy</subject><subject>Black Si</subject><subject>effective medium</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference time domain (FDTD)</subject><subject>Mathematical models</subject><subject>Multiscale analysis</subject><subject>nanoscale</subject><subject>Nanoscale devices</subject><subject>Numerical methods</subject><subject>optics</subject><subject>Photovoltaic cells</subject><subject>Ray tracing</subject><subject>ray-tracing (RT)</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Texturing</subject><subject>Time domain analysis</subject><subject>transfer matrix method (TMM)</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kF9LwzAUxYsoOHSfQB8CPnfe_GnaPOqYbjKpuM3XkKWpZsZmJp3ot7dl0wuXe7mccw_8kuQSwwhjENcPT9NyWb6MCOB8RHJWCICjZEBwxlPKgB7_7bTAp8kwxg10xSHjnA2S53LbWq0cevSVcbZ5Rb5Gt07pd7SwzmrfoNoHtPBOBTQ2zkW0ir1sUtdGt_bLoFlTmW-0NPqtsZ87E8-Tk1q5aIaHeZas7ibL8TSdl_ez8c081YyTNiXMCCxYDqCgYrqggtCcVIVSAgrBQVBiaE1p14xUYCDHBav0mqyz7q4yepZc7f9ug-9zW7nxu9B0kRKLjDPCRQ6diu1VOvgYg6nlNtgPFX4kBtkDlAeAsgcoDwA728XeZo0x_5YCmGBZTn8BFatq8Q</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Rahman, Tasmiat</creator><creator>Boden, Stuart A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8955-0233</orcidid></search><sort><creationdate>20171101</creationdate><title>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</title><author>Rahman, Tasmiat ; Boden, Stuart A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Black Si</topic><topic>effective medium</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference time domain (FDTD)</topic><topic>Mathematical models</topic><topic>Multiscale analysis</topic><topic>nanoscale</topic><topic>Nanoscale devices</topic><topic>Numerical methods</topic><topic>optics</topic><topic>Photovoltaic cells</topic><topic>Ray tracing</topic><topic>ray-tracing (RT)</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Texturing</topic><topic>Time domain analysis</topic><topic>transfer matrix method (TMM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Tasmiat</au><au>Boden, Stuart A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>7</volume><issue>6</issue><spage>1556</spage><epage>1562</epage><pages>1556-1562</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2017.2748900</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8955-0233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2017-11, Vol.7 (6), p.1556-1562 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_1956426970 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Black Si effective medium Finite difference method Finite difference methods Finite difference time domain method finite-difference time domain (FDTD) Mathematical models Multiscale analysis nanoscale Nanoscale devices Numerical methods optics Photovoltaic cells Ray tracing ray-tracing (RT) Silicon Solar cells Texturing Time domain analysis transfer matrix method (TMM) |
title | Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Modeling%20of%20Black%20Silicon%20for%20Solar%20Cells%20Using%20Effective%20Index%20Techniques&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Rahman,%20Tasmiat&rft.date=2017-11-01&rft.volume=7&rft.issue=6&rft.spage=1556&rft.epage=1562&rft.pages=1556-1562&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2017.2748900&rft_dat=%3Cproquest_cross%3E1956426970%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956426970&rft_id=info:pmid/&rft_ieee_id=8049457&rfr_iscdi=true |