Loading…

Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques

Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2017-11, Vol.7 (6), p.1556-1562
Main Authors: Rahman, Tasmiat, Boden, Stuart A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53
cites cdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53
container_end_page 1562
container_issue 6
container_start_page 1556
container_title IEEE journal of photovoltaics
container_volume 7
creator Rahman, Tasmiat
Boden, Stuart A.
description Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.
doi_str_mv 10.1109/JPHOTOV.2017.2748900
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956426970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8049457</ieee_id><sourcerecordid>1956426970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYsoOHSfQB8CPnfe_GnaPOqYbjKpuM3XkKWpZsZmJp3ot7dl0wuXe7mccw_8kuQSwwhjENcPT9NyWb6MCOB8RHJWCICjZEBwxlPKgB7_7bTAp8kwxg10xSHjnA2S53LbWq0cevSVcbZ5Rb5Gt07pd7SwzmrfoNoHtPBOBTQ2zkW0ir1sUtdGt_bLoFlTmW-0NPqtsZ87E8-Tk1q5aIaHeZas7ibL8TSdl_ez8c081YyTNiXMCCxYDqCgYrqggtCcVIVSAgrBQVBiaE1p14xUYCDHBav0mqyz7q4yepZc7f9ug-9zW7nxu9B0kRKLjDPCRQ6diu1VOvgYg6nlNtgPFX4kBtkDlAeAsgcoDwA728XeZo0x_5YCmGBZTn8BFatq8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956426970</pqid></control><display><type>article</type><title>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</title><source>IEEE Xplore (Online service)</source><creator>Rahman, Tasmiat ; Boden, Stuart A.</creator><creatorcontrib>Rahman, Tasmiat ; Boden, Stuart A.</creatorcontrib><description>Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2017.2748900</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Black Si ; effective medium ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; finite-difference time domain (FDTD) ; Mathematical models ; Multiscale analysis ; nanoscale ; Nanoscale devices ; Numerical methods ; optics ; Photovoltaic cells ; Ray tracing ; ray-tracing (RT) ; Silicon ; Solar cells ; Texturing ; Time domain analysis ; transfer matrix method (TMM)</subject><ispartof>IEEE journal of photovoltaics, 2017-11, Vol.7 (6), p.1556-1562</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</citedby><cites>FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</cites><orcidid>0000-0001-8955-0233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8049457$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><title>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.</description><subject>Accuracy</subject><subject>Black Si</subject><subject>effective medium</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference time domain (FDTD)</subject><subject>Mathematical models</subject><subject>Multiscale analysis</subject><subject>nanoscale</subject><subject>Nanoscale devices</subject><subject>Numerical methods</subject><subject>optics</subject><subject>Photovoltaic cells</subject><subject>Ray tracing</subject><subject>ray-tracing (RT)</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Texturing</subject><subject>Time domain analysis</subject><subject>transfer matrix method (TMM)</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kF9LwzAUxYsoOHSfQB8CPnfe_GnaPOqYbjKpuM3XkKWpZsZmJp3ot7dl0wuXe7mccw_8kuQSwwhjENcPT9NyWb6MCOB8RHJWCICjZEBwxlPKgB7_7bTAp8kwxg10xSHjnA2S53LbWq0cevSVcbZ5Rb5Gt07pd7SwzmrfoNoHtPBOBTQ2zkW0ir1sUtdGt_bLoFlTmW-0NPqtsZ87E8-Tk1q5aIaHeZas7ibL8TSdl_ez8c081YyTNiXMCCxYDqCgYrqggtCcVIVSAgrBQVBiaE1p14xUYCDHBav0mqyz7q4yepZc7f9ug-9zW7nxu9B0kRKLjDPCRQ6diu1VOvgYg6nlNtgPFX4kBtkDlAeAsgcoDwA728XeZo0x_5YCmGBZTn8BFatq8Q</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Rahman, Tasmiat</creator><creator>Boden, Stuart A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8955-0233</orcidid></search><sort><creationdate>20171101</creationdate><title>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</title><author>Rahman, Tasmiat ; Boden, Stuart A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Black Si</topic><topic>effective medium</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference time domain (FDTD)</topic><topic>Mathematical models</topic><topic>Multiscale analysis</topic><topic>nanoscale</topic><topic>Nanoscale devices</topic><topic>Numerical methods</topic><topic>optics</topic><topic>Photovoltaic cells</topic><topic>Ray tracing</topic><topic>ray-tracing (RT)</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Texturing</topic><topic>Time domain analysis</topic><topic>transfer matrix method (TMM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Tasmiat</creatorcontrib><creatorcontrib>Boden, Stuart A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Tasmiat</au><au>Boden, Stuart A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>7</volume><issue>6</issue><spage>1556</spage><epage>1562</epage><pages>1556-1562</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Texturing the surface with both micro and nano scale features to form black silicon is a promising approach in improving solar cell efficiency. In optical modeling of such a surface, it is difficult to balance the accuracy and computational resource. In this work, we develop on a semianalytical model, effective index technique (EIT), which utilizes a finite-difference time domain (FDTD) method to represent the nanoscale texturing as an effective medium, and then apply this to microscale structures, which can then be modeled using the transfer matrix method and ray-tracing. We fabricate and model both periodic and random nanoscale textures, and analyze the accuracy of several effective index models against measured reflectivity. The limitations in the model are identified and coherency of the films is studied. The semianalytical method is shown to perform better than the other effective medium approaches for modeling black silicon and is applicable to modeling multiscale textures, whereas full numerical methods such as FDTD are not. However, although the EIT approach predicts the trends in antireflective performance of a texture, it remains inaccurate when compared with the experiment. Also, as with all effective medium approaches, the EIT does not account for light trapping through scattering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2017.2748900</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8955-0233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2017-11, Vol.7 (6), p.1556-1562
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_1956426970
source IEEE Xplore (Online service)
subjects Accuracy
Black Si
effective medium
Finite difference method
Finite difference methods
Finite difference time domain method
finite-difference time domain (FDTD)
Mathematical models
Multiscale analysis
nanoscale
Nanoscale devices
Numerical methods
optics
Photovoltaic cells
Ray tracing
ray-tracing (RT)
Silicon
Solar cells
Texturing
Time domain analysis
transfer matrix method (TMM)
title Optical Modeling of Black Silicon for Solar Cells Using Effective Index Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T12%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Modeling%20of%20Black%20Silicon%20for%20Solar%20Cells%20Using%20Effective%20Index%20Techniques&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Rahman,%20Tasmiat&rft.date=2017-11-01&rft.volume=7&rft.issue=6&rft.spage=1556&rft.epage=1562&rft.pages=1556-1562&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2017.2748900&rft_dat=%3Cproquest_cross%3E1956426970%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-24e9194700a0d4c8392372d8aa908960932e3f333f342d0e07184dcb2b5e3fa53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956426970&rft_id=info:pmid/&rft_ieee_id=8049457&rfr_iscdi=true