Loading…

Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function

Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2017-11, Vol.14 (11), p.1963-1967
Main Authors: Xie, Weiying, Li, Yunsong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3
cites cdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3
container_end_page 1967
container_issue 11
container_start_page 1963
container_title IEEE geoscience and remote sensing letters
container_volume 14
creator Xie, Weiying
Li, Yunsong
description Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.
doi_str_mv 10.1109/LGRS.2017.2743738
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956443535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8030333</ieee_id><sourcerecordid>1956443535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgnP4A8aXgc2fSJEvyKNN9wFDQDX0LaXo7M7q0Jt1D_70tG9574X6dcy8chO4JnhCC1dN68fE5yTARk0wwKqi8QCPCuUwxF-RyqBlPuZLf1-gmxj3GGZNSjNB22TUQYgO2DaZKVgezg9AlL-BrF53fJfnQQJOswQQ_DL5c-5NsgnHe5BUkb7WvnO-Xru2S-dHb1tX-Fl2Vpopwd85jtJ2_bmbLdP2-WM2e16nNFG3TAttcGGJFycvMKitZIRnDpKCcZUCVyWyhCjXFtswtnUoFOBd95IUiZWEMHaPH090m1L9HiK3e18fg-5eaKD5ljPLex4icUDbUMQYodRPcwYROE6wH9fSgnh7U02f1es7DieMA4B8vMcW0tz-4BGy5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956443535</pqid></control><display><type>article</type><title>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</title><source>IEEE Xplore (Online service)</source><creator>Xie, Weiying ; Li, Yunsong</creator><creatorcontrib>Xie, Weiying ; Li, Yunsong</creatorcontrib><description>Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2743738</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Cubic neighbor patches ; deep convolutional neural network (CNN) ; Deep learning ; hyperspectral image (HSI) denoising ; Hyperspectral imaging ; Imagery ; Neural networks ; Noise ; Noise measurement ; Noise reduction ; Nonlinear systems ; Nonlinearity ; Spectral signatures ; trainable nonlinearity function ; Training ; Training data</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.1963-1967</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</citedby><cites>FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</cites><orcidid>0000-0002-5239-6428 ; 0000-0002-0335-3878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8030333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><title>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Cubic neighbor patches</subject><subject>deep convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>hyperspectral image (HSI) denoising</subject><subject>Hyperspectral imaging</subject><subject>Imagery</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Spectral signatures</subject><subject>trainable nonlinearity function</subject><subject>Training</subject><subject>Training data</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UF1LwzAUDaLgnP4A8aXgc2fSJEvyKNN9wFDQDX0LaXo7M7q0Jt1D_70tG9574X6dcy8chO4JnhCC1dN68fE5yTARk0wwKqi8QCPCuUwxF-RyqBlPuZLf1-gmxj3GGZNSjNB22TUQYgO2DaZKVgezg9AlL-BrF53fJfnQQJOswQQ_DL5c-5NsgnHe5BUkb7WvnO-Xru2S-dHb1tX-Fl2Vpopwd85jtJ2_bmbLdP2-WM2e16nNFG3TAttcGGJFycvMKitZIRnDpKCcZUCVyWyhCjXFtswtnUoFOBd95IUiZWEMHaPH090m1L9HiK3e18fg-5eaKD5ljPLex4icUDbUMQYodRPcwYROE6wH9fSgnh7U02f1es7DieMA4B8vMcW0tz-4BGy5</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Xie, Weiying</creator><creator>Li, Yunsong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5239-6428</orcidid><orcidid>https://orcid.org/0000-0002-0335-3878</orcidid></search><sort><creationdate>20171101</creationdate><title>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</title><author>Xie, Weiying ; Li, Yunsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Cubic neighbor patches</topic><topic>deep convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>hyperspectral image (HSI) denoising</topic><topic>Hyperspectral imaging</topic><topic>Imagery</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Spectral signatures</topic><topic>trainable nonlinearity function</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Weiying</au><au>Li, Yunsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>14</volume><issue>11</issue><spage>1963</spage><epage>1967</epage><pages>1963-1967</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2743738</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5239-6428</orcidid><orcidid>https://orcid.org/0000-0002-0335-3878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.1963-1967
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_1956443535
source IEEE Xplore (Online service)
subjects Artificial neural networks
Convolution
Cubic neighbor patches
deep convolutional neural network (CNN)
Deep learning
hyperspectral image (HSI) denoising
Hyperspectral imaging
Imagery
Neural networks
Noise
Noise measurement
Noise reduction
Nonlinear systems
Nonlinearity
Spectral signatures
trainable nonlinearity function
Training
Training data
title Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Imagery%20Denoising%20by%20Deep%20Learning%20With%20Trainable%20Nonlinearity%20Function&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xie,%20Weiying&rft.date=2017-11-01&rft.volume=14&rft.issue=11&rft.spage=1963&rft.epage=1967&rft.pages=1963-1967&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2743738&rft_dat=%3Cproquest_cross%3E1956443535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956443535&rft_id=info:pmid/&rft_ieee_id=8030333&rfr_iscdi=true