Loading…
Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function
Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly de...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2017-11, Vol.14 (11), p.1963-1967 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3 |
container_end_page | 1967 |
container_issue | 11 |
container_start_page | 1963 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 14 |
creator | Xie, Weiying Li, Yunsong |
description | Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance. |
doi_str_mv | 10.1109/LGRS.2017.2743738 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956443535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8030333</ieee_id><sourcerecordid>1956443535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgnP4A8aXgc2fSJEvyKNN9wFDQDX0LaXo7M7q0Jt1D_70tG9574X6dcy8chO4JnhCC1dN68fE5yTARk0wwKqi8QCPCuUwxF-RyqBlPuZLf1-gmxj3GGZNSjNB22TUQYgO2DaZKVgezg9AlL-BrF53fJfnQQJOswQQ_DL5c-5NsgnHe5BUkb7WvnO-Xru2S-dHb1tX-Fl2Vpopwd85jtJ2_bmbLdP2-WM2e16nNFG3TAttcGGJFycvMKitZIRnDpKCcZUCVyWyhCjXFtswtnUoFOBd95IUiZWEMHaPH090m1L9HiK3e18fg-5eaKD5ljPLex4icUDbUMQYodRPcwYROE6wH9fSgnh7U02f1es7DieMA4B8vMcW0tz-4BGy5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956443535</pqid></control><display><type>article</type><title>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</title><source>IEEE Xplore (Online service)</source><creator>Xie, Weiying ; Li, Yunsong</creator><creatorcontrib>Xie, Weiying ; Li, Yunsong</creatorcontrib><description>Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2017.2743738</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Cubic neighbor patches ; deep convolutional neural network (CNN) ; Deep learning ; hyperspectral image (HSI) denoising ; Hyperspectral imaging ; Imagery ; Neural networks ; Noise ; Noise measurement ; Noise reduction ; Nonlinear systems ; Nonlinearity ; Spectral signatures ; trainable nonlinearity function ; Training ; Training data</subject><ispartof>IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.1963-1967</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</citedby><cites>FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</cites><orcidid>0000-0002-5239-6428 ; 0000-0002-0335-3878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8030333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><title>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Cubic neighbor patches</subject><subject>deep convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>hyperspectral image (HSI) denoising</subject><subject>Hyperspectral imaging</subject><subject>Imagery</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Spectral signatures</subject><subject>trainable nonlinearity function</subject><subject>Training</subject><subject>Training data</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UF1LwzAUDaLgnP4A8aXgc2fSJEvyKNN9wFDQDX0LaXo7M7q0Jt1D_70tG9574X6dcy8chO4JnhCC1dN68fE5yTARk0wwKqi8QCPCuUwxF-RyqBlPuZLf1-gmxj3GGZNSjNB22TUQYgO2DaZKVgezg9AlL-BrF53fJfnQQJOswQQ_DL5c-5NsgnHe5BUkb7WvnO-Xru2S-dHb1tX-Fl2Vpopwd85jtJ2_bmbLdP2-WM2e16nNFG3TAttcGGJFycvMKitZIRnDpKCcZUCVyWyhCjXFtswtnUoFOBd95IUiZWEMHaPH090m1L9HiK3e18fg-5eaKD5ljPLex4icUDbUMQYodRPcwYROE6wH9fSgnh7U02f1es7DieMA4B8vMcW0tz-4BGy5</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Xie, Weiying</creator><creator>Li, Yunsong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5239-6428</orcidid><orcidid>https://orcid.org/0000-0002-0335-3878</orcidid></search><sort><creationdate>20171101</creationdate><title>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</title><author>Xie, Weiying ; Li, Yunsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Cubic neighbor patches</topic><topic>deep convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>hyperspectral image (HSI) denoising</topic><topic>Hyperspectral imaging</topic><topic>Imagery</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Spectral signatures</topic><topic>trainable nonlinearity function</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Weiying</creatorcontrib><creatorcontrib>Li, Yunsong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Weiying</au><au>Li, Yunsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>14</volume><issue>11</issue><spage>1963</spage><epage>1967</epage><pages>1963-1967</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral images (HSIs) can describe subtle differences in the spectral signatures of objects, and thus they are effective in a wide array of applications. However, an HSI is inevitably contaminated with some unwanted components like noise resulting in spectral distortion, which significantly decreases the performance of postprocessing. In this letter, a deep stage convolutional neural network (CNN) with trainable nonlinearity functions is applied for the first time to remove noise in HSIs. Besides the fact that the weight and bias matrices are learned from cubic training clean-noisy HSI patches, the nonlinearity functions in each stage are also trainable, which differ from the conventional CNN with a fixed nonlinearity function. Compared with the state-of-the-art HSI denoising methods, the experimental results on both synthetic and real HSIs confirm that the proposed method can obtain a more effective and efficient performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2017.2743738</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5239-6428</orcidid><orcidid>https://orcid.org/0000-0002-0335-3878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2017-11, Vol.14 (11), p.1963-1967 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_1956443535 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Convolution Cubic neighbor patches deep convolutional neural network (CNN) Deep learning hyperspectral image (HSI) denoising Hyperspectral imaging Imagery Neural networks Noise Noise measurement Noise reduction Nonlinear systems Nonlinearity Spectral signatures trainable nonlinearity function Training Training data |
title | Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Imagery%20Denoising%20by%20Deep%20Learning%20With%20Trainable%20Nonlinearity%20Function&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xie,%20Weiying&rft.date=2017-11-01&rft.volume=14&rft.issue=11&rft.spage=1963&rft.epage=1967&rft.pages=1963-1967&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2017.2743738&rft_dat=%3Cproquest_cross%3E1956443535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-d0cb7a1c7f5f2c9c84d84401d3542e39a2cd9d960cfbc3689e0b70b7bd91fdaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956443535&rft_id=info:pmid/&rft_ieee_id=8030333&rfr_iscdi=true |