Loading…
Distribution of peak shear stress in finite element models of reinforced concrete slabs
•The Levels of Approximation from the fib Model Code are applied to assessment.•This paper focuses on Level of Assessment II for reinforced concrete slab bridges.•An experiment is compared with a finite element model to develop a recommendation.•The recommended width for the distribution is 4 times...
Saved in:
Published in: | Engineering structures 2017-10, Vol.148, p.571-583 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •The Levels of Approximation from the fib Model Code are applied to assessment.•This paper focuses on Level of Assessment II for reinforced concrete slab bridges.•An experiment is compared with a finite element model to develop a recommendation.•The recommended width for the distribution is 4 times the effective depth.•A case study has been made to compare the results of Level of Assessment I and II.
Existing reinforced concrete solid slab bridges in the Netherlands are re-assessed for shear based on a Unity Check: the ratio of the shear stress caused by the applied loads to the shear capacity of the concrete cross-section. The governing shear stress resulting from the self-weight, weight of the wearing surface, distributed and concentrated live loads, can be determined with a simplified spreadsheet-based method, the Quick Scan (Level of Assessment I) as well as with a linear finite element model (Level of Assessment II). When a finite element model is used, a distribution of shear stresses over the width of the slab bridge is automatically found. To compare the governing shear stress caused by the loads to the shear capacity, it is necessary to determine over which width the peak shear stress from the finite element model can be distributed. To answer this question, a finite element model is compared to an experiment. The experiment consists of a continuous, reinforced concrete slab subjected to a single concentrated load close to the support. Seven bearings equipped with load cells that measure the reaction force profile along the width of the slab are used to compare to the stress profile obtained from the finite element model. From this analysis, it is found that the peak shear stress in a linear finite element model can be distributed over 4dl with dl the effective depth to the longitudinal reinforcement of the slab. The comparison of measured reaction force profiles over the support to the stress profile from a finite element model results in a research-based distribution width that replaces the rules of thumb that were used until now. |
---|---|
ISSN: | 0141-0296 1873-7323 |
DOI: | 10.1016/j.engstruct.2017.07.005 |