Loading…

DIRAC ACTIONS AND LU’S LIE ALGEBROID

Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a...

Full description

Saved in:
Bibliographic Details
Published in:Transformation groups 2017-12, Vol.22 (4), p.1081-1124
Main Author: MEINRENKEN, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563
cites cdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563
container_end_page 1124
container_issue 4
container_start_page 1081
container_title Transformation groups
container_volume 22
creator MEINRENKEN, E.
description Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space H/K , obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.
doi_str_mv 10.1007/s00031-017-9424-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956552007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956552007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaRkNgZPLE9SZchDSVS1Ej9kdhZsRUjKmiK3S6y4xpcj5PgKizYsJrR6Htv9B4h18DugLHk3jPGOFAGCZ2IWND-hIxAhotM8fk07CzlVHCMz8mF9xsWQEQckdtpucjyKMtXZT1fRtl8GlXr78-vZVSVRZRVs-JhUZfTS3JmmzffXv3OMVk_Fqv8iVb1rMyzihoOuKcS0VgrjUSwvDXaNNhwk2hItQCJnIHWAnVgOQqbmjhuBG8EaG4kEwEYk5vBd-e6j0Pr92rTHdw2vFQwkShlHMIGCgbKuM5711q1c6_vjesVMHWsQw11qJBSHetQfdDEg8YHdvvSuj_O_4p-ACNVXfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956552007</pqid></control><display><type>article</type><title>DIRAC ACTIONS AND LU’S LIE ALGEBROID</title><source>Springer Link</source><creator>MEINRENKEN, E.</creator><creatorcontrib>MEINRENKEN, E.</creatorcontrib><description>Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space H/K , obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-017-9424-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Classification ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Topological Groups</subject><ispartof>Transformation groups, 2017-12, Vol.22 (4), p.1081-1124</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</citedby><cites>FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>MEINRENKEN, E.</creatorcontrib><title>DIRAC ACTIONS AND LU’S LIE ALGEBROID</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space H/K , obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.</description><subject>Algebra</subject><subject>Classification</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological Groups</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaRkNgZPLE9SZchDSVS1Ej9kdhZsRUjKmiK3S6y4xpcj5PgKizYsJrR6Htv9B4h18DugLHk3jPGOFAGCZ2IWND-hIxAhotM8fk07CzlVHCMz8mF9xsWQEQckdtpucjyKMtXZT1fRtl8GlXr78-vZVSVRZRVs-JhUZfTS3JmmzffXv3OMVk_Fqv8iVb1rMyzihoOuKcS0VgrjUSwvDXaNNhwk2hItQCJnIHWAnVgOQqbmjhuBG8EaG4kEwEYk5vBd-e6j0Pr92rTHdw2vFQwkShlHMIGCgbKuM5711q1c6_vjesVMHWsQw11qJBSHetQfdDEg8YHdvvSuj_O_4p-ACNVXfA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>MEINRENKEN, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>DIRAC ACTIONS AND LU’S LIE ALGEBROID</title><author>MEINRENKEN, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEINRENKEN, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEINRENKEN, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRAC ACTIONS AND LU’S LIE ALGEBROID</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>22</volume><issue>4</issue><spage>1081</spage><epage>1124</epage><pages>1081-1124</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space H/K , obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-017-9424-y</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4362
ispartof Transformation groups, 2017-12, Vol.22 (4), p.1081-1124
issn 1083-4362
1531-586X
language eng
recordid cdi_proquest_journals_1956552007
source Springer Link
subjects Algebra
Classification
Lie Groups
Mathematics
Mathematics and Statistics
Topological Groups
title DIRAC ACTIONS AND LU’S LIE ALGEBROID
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRAC%20ACTIONS%20AND%20LU%E2%80%99S%20LIE%20ALGEBROID&rft.jtitle=Transformation%20groups&rft.au=MEINRENKEN,%20E.&rft.date=2017-12-01&rft.volume=22&rft.issue=4&rft.spage=1081&rft.epage=1124&rft.pages=1081-1124&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-017-9424-y&rft_dat=%3Cproquest_cross%3E1956552007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956552007&rft_id=info:pmid/&rfr_iscdi=true