Loading…
DIRAC ACTIONS AND LU’S LIE ALGEBROID
Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a...
Saved in:
Published in: | Transformation groups 2017-12, Vol.22 (4), p.1081-1124 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563 |
container_end_page | 1124 |
container_issue | 4 |
container_start_page | 1081 |
container_title | Transformation groups |
container_volume | 22 |
creator | MEINRENKEN, E. |
description | Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space
H/K
, obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case. |
doi_str_mv | 10.1007/s00031-017-9424-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1956552007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1956552007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaRkNgZPLE9SZchDSVS1Ej9kdhZsRUjKmiK3S6y4xpcj5PgKizYsJrR6Htv9B4h18DugLHk3jPGOFAGCZ2IWND-hIxAhotM8fk07CzlVHCMz8mF9xsWQEQckdtpucjyKMtXZT1fRtl8GlXr78-vZVSVRZRVs-JhUZfTS3JmmzffXv3OMVk_Fqv8iVb1rMyzihoOuKcS0VgrjUSwvDXaNNhwk2hItQCJnIHWAnVgOQqbmjhuBG8EaG4kEwEYk5vBd-e6j0Pr92rTHdw2vFQwkShlHMIGCgbKuM5711q1c6_vjesVMHWsQw11qJBSHetQfdDEg8YHdvvSuj_O_4p-ACNVXfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956552007</pqid></control><display><type>article</type><title>DIRAC ACTIONS AND LU’S LIE ALGEBROID</title><source>Springer Link</source><creator>MEINRENKEN, E.</creator><creatorcontrib>MEINRENKEN, E.</creatorcontrib><description>Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space
H/K
, obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.</description><identifier>ISSN: 1083-4362</identifier><identifier>EISSN: 1531-586X</identifier><identifier>DOI: 10.1007/s00031-017-9424-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Classification ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Topological Groups</subject><ispartof>Transformation groups, 2017-12, Vol.22 (4), p.1081-1124</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</citedby><cites>FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>MEINRENKEN, E.</creatorcontrib><title>DIRAC ACTIONS AND LU’S LIE ALGEBROID</title><title>Transformation groups</title><addtitle>Transformation Groups</addtitle><description>Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space
H/K
, obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.</description><subject>Algebra</subject><subject>Classification</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topological Groups</subject><issn>1083-4362</issn><issn>1531-586X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaRkNgZPLE9SZchDSVS1Ej9kdhZsRUjKmiK3S6y4xpcj5PgKizYsJrR6Htv9B4h18DugLHk3jPGOFAGCZ2IWND-hIxAhotM8fk07CzlVHCMz8mF9xsWQEQckdtpucjyKMtXZT1fRtl8GlXr78-vZVSVRZRVs-JhUZfTS3JmmzffXv3OMVk_Fqv8iVb1rMyzihoOuKcS0VgrjUSwvDXaNNhwk2hItQCJnIHWAnVgOQqbmjhuBG8EaG4kEwEYk5vBd-e6j0Pr92rTHdw2vFQwkShlHMIGCgbKuM5711q1c6_vjesVMHWsQw11qJBSHetQfdDEg8YHdvvSuj_O_4p-ACNVXfA</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>MEINRENKEN, E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>DIRAC ACTIONS AND LU’S LIE ALGEBROID</title><author>MEINRENKEN, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEINRENKEN, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Transformation groups</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEINRENKEN, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIRAC ACTIONS AND LU’S LIE ALGEBROID</atitle><jtitle>Transformation groups</jtitle><stitle>Transformation Groups</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>22</volume><issue>4</issue><spage>1081</spage><epage>1124</epage><pages>1081-1124</pages><issn>1083-4362</issn><eissn>1531-586X</eissn><abstract>Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space
H/K
, obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00031-017-9424-y</doi><tpages>44</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4362 |
ispartof | Transformation groups, 2017-12, Vol.22 (4), p.1081-1124 |
issn | 1083-4362 1531-586X |
language | eng |
recordid | cdi_proquest_journals_1956552007 |
source | Springer Link |
subjects | Algebra Classification Lie Groups Mathematics Mathematics and Statistics Topological Groups |
title | DIRAC ACTIONS AND LU’S LIE ALGEBROID |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T10%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIRAC%20ACTIONS%20AND%20LU%E2%80%99S%20LIE%20ALGEBROID&rft.jtitle=Transformation%20groups&rft.au=MEINRENKEN,%20E.&rft.date=2017-12-01&rft.volume=22&rft.issue=4&rft.spage=1081&rft.epage=1124&rft.pages=1081-1124&rft.issn=1083-4362&rft.eissn=1531-586X&rft_id=info:doi/10.1007/s00031-017-9424-y&rft_dat=%3Cproquest_cross%3E1956552007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-566cff5c561f3ecbca6a3c7b18b4156301bb46b316364f8c22a43a41b3c504563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956552007&rft_id=info:pmid/&rfr_iscdi=true |