Loading…
Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers
Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myr...
Saved in:
Published in: | Current Agriculture Research Journal 2017-06, Vol.5 (1), p.123-129 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3 |
container_end_page | 129 |
container_issue | 1 |
container_start_page | 123 |
container_title | Current Agriculture Research Journal |
container_volume | 5 |
creator | Nag, Sumita Mitra, Jiban |
description | Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level. |
doi_str_mv | 10.12944/CARJ.5.1.14 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1957151912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957151912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYsoOObe_AABXxRsTdI0fx7HdFPpEMS9Gpr0dmR27UwycX56N-fTuYfz497LSZJLgjNCFWN3k_Hrc1ZkJCPsJBnQnJJUKUFODzMTKeNSniejEFYYY6o4o1QMkvcZdBCdRffuC_wSOguob9C0rb7RPurjbgMBXZeu267RIrhYRReCW-9dmd2gRXSt-3HdEs2d9X2oIrSti4Dmlf8AHy6Ss6ZqA4z-dZgspg9vk8e0fJk9TcZlaimhLGVWEsOM5SyvleSyBoolByMxrkVj8toYK4zCjWXSckE4BwZNZcBKKBpR58Pk6rh34_vPLYSoV_3Wd_uTmqhCkIIoQvfU7ZE6vBo8NHrj3bryO02w_itRH0rUhSaasPwXGFRlOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957151912</pqid></control><display><type>article</type><title>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</title><source>Publicly Available Content Database</source><creator>Nag, Sumita ; Mitra, Jiban</creator><creatorcontrib>Nag, Sumita ; Mitra, Jiban</creatorcontrib><description>Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.</description><identifier>ISSN: 2347-4688</identifier><identifier>EISSN: 2321-9971</identifier><identifier>DOI: 10.12944/CARJ.5.1.14</identifier><language>eng</language><publisher>Bhopal: Enviro Research Publishers</publisher><subject>Crops ; Cultivars ; Deoxyribonucleic acid ; Divergence ; DNA ; Flax ; Gene polymorphism ; Genetic analysis ; Genetic diversity ; Genetic markers ; Genetic testing ; Genotype & phenotype ; Genotypes ; Heredity ; Linaceae ; Linum ; Linum usitatissimum ; Markers ; Microsatellites ; Morphology ; Multivariate analysis ; Oilseed crops ; Oilseeds ; Plant breeding ; Polymorphism ; Primers ; Reproducibility ; Seeds ; Software ; Taxonomy</subject><ispartof>Current Agriculture Research Journal, 2017-06, Vol.5 (1), p.123-129</ispartof><rights>Copyright Enviro Research Publishers Jun 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</citedby><cites>FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957151912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957151912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nag, Sumita</creatorcontrib><creatorcontrib>Mitra, Jiban</creatorcontrib><title>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</title><title>Current Agriculture Research Journal</title><description>Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.</description><subject>Crops</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>DNA</subject><subject>Flax</subject><subject>Gene polymorphism</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic markers</subject><subject>Genetic testing</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Heredity</subject><subject>Linaceae</subject><subject>Linum</subject><subject>Linum usitatissimum</subject><subject>Markers</subject><subject>Microsatellites</subject><subject>Morphology</subject><subject>Multivariate analysis</subject><subject>Oilseed crops</subject><subject>Oilseeds</subject><subject>Plant breeding</subject><subject>Polymorphism</subject><subject>Primers</subject><subject>Reproducibility</subject><subject>Seeds</subject><subject>Software</subject><subject>Taxonomy</subject><issn>2347-4688</issn><issn>2321-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkF9LwzAUxYsoOObe_AABXxRsTdI0fx7HdFPpEMS9Gpr0dmR27UwycX56N-fTuYfz497LSZJLgjNCFWN3k_Hrc1ZkJCPsJBnQnJJUKUFODzMTKeNSniejEFYYY6o4o1QMkvcZdBCdRffuC_wSOguob9C0rb7RPurjbgMBXZeu267RIrhYRReCW-9dmd2gRXSt-3HdEs2d9X2oIrSti4Dmlf8AHy6Ss6ZqA4z-dZgspg9vk8e0fJk9TcZlaimhLGVWEsOM5SyvleSyBoolByMxrkVj8toYK4zCjWXSckE4BwZNZcBKKBpR58Pk6rh34_vPLYSoV_3Wd_uTmqhCkIIoQvfU7ZE6vBo8NHrj3bryO02w_itRH0rUhSaasPwXGFRlOA</recordid><startdate>20170618</startdate><enddate>20170618</enddate><creator>Nag, Sumita</creator><creator>Mitra, Jiban</creator><general>Enviro Research Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170618</creationdate><title>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</title><author>Nag, Sumita ; Mitra, Jiban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crops</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>DNA</topic><topic>Flax</topic><topic>Gene polymorphism</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic markers</topic><topic>Genetic testing</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Heredity</topic><topic>Linaceae</topic><topic>Linum</topic><topic>Linum usitatissimum</topic><topic>Markers</topic><topic>Microsatellites</topic><topic>Morphology</topic><topic>Multivariate analysis</topic><topic>Oilseed crops</topic><topic>Oilseeds</topic><topic>Plant breeding</topic><topic>Polymorphism</topic><topic>Primers</topic><topic>Reproducibility</topic><topic>Seeds</topic><topic>Software</topic><topic>Taxonomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Nag, Sumita</creatorcontrib><creatorcontrib>Mitra, Jiban</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Current Agriculture Research Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nag, Sumita</au><au>Mitra, Jiban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</atitle><jtitle>Current Agriculture Research Journal</jtitle><date>2017-06-18</date><risdate>2017</risdate><volume>5</volume><issue>1</issue><spage>123</spage><epage>129</epage><pages>123-129</pages><issn>2347-4688</issn><eissn>2321-9971</eissn><abstract>Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.</abstract><cop>Bhopal</cop><pub>Enviro Research Publishers</pub><doi>10.12944/CARJ.5.1.14</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2347-4688 |
ispartof | Current Agriculture Research Journal, 2017-06, Vol.5 (1), p.123-129 |
issn | 2347-4688 2321-9971 |
language | eng |
recordid | cdi_proquest_journals_1957151912 |
source | Publicly Available Content Database |
subjects | Crops Cultivars Deoxyribonucleic acid Divergence DNA Flax Gene polymorphism Genetic analysis Genetic diversity Genetic markers Genetic testing Genotype & phenotype Genotypes Heredity Linaceae Linum Linum usitatissimum Markers Microsatellites Morphology Multivariate analysis Oilseed crops Oilseeds Plant breeding Polymorphism Primers Reproducibility Seeds Software Taxonomy |
title | Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Divergence%20of%20Flax%20Genotypes%20(Linum%20Usitatissimum%20L.)%20Utilizing%20Microsatellite%20Markers&rft.jtitle=Current%20Agriculture%20Research%20Journal&rft.au=Nag,%20Sumita&rft.date=2017-06-18&rft.volume=5&rft.issue=1&rft.spage=123&rft.epage=129&rft.pages=123-129&rft.issn=2347-4688&rft.eissn=2321-9971&rft_id=info:doi/10.12944/CARJ.5.1.14&rft_dat=%3Cproquest_cross%3E1957151912%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957151912&rft_id=info:pmid/&rfr_iscdi=true |