Loading…

Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers

Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myr...

Full description

Saved in:
Bibliographic Details
Published in:Current Agriculture Research Journal 2017-06, Vol.5 (1), p.123-129
Main Authors: Nag, Sumita, Mitra, Jiban
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3
cites cdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3
container_end_page 129
container_issue 1
container_start_page 123
container_title Current Agriculture Research Journal
container_volume 5
creator Nag, Sumita
Mitra, Jiban
description Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.
doi_str_mv 10.12944/CARJ.5.1.14
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1957151912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957151912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYsoOObe_AABXxRsTdI0fx7HdFPpEMS9Gpr0dmR27UwycX56N-fTuYfz497LSZJLgjNCFWN3k_Hrc1ZkJCPsJBnQnJJUKUFODzMTKeNSniejEFYYY6o4o1QMkvcZdBCdRffuC_wSOguob9C0rb7RPurjbgMBXZeu267RIrhYRReCW-9dmd2gRXSt-3HdEs2d9X2oIrSti4Dmlf8AHy6Ss6ZqA4z-dZgspg9vk8e0fJk9TcZlaimhLGVWEsOM5SyvleSyBoolByMxrkVj8toYK4zCjWXSckE4BwZNZcBKKBpR58Pk6rh34_vPLYSoV_3Wd_uTmqhCkIIoQvfU7ZE6vBo8NHrj3bryO02w_itRH0rUhSaasPwXGFRlOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957151912</pqid></control><display><type>article</type><title>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</title><source>Publicly Available Content Database</source><creator>Nag, Sumita ; Mitra, Jiban</creator><creatorcontrib>Nag, Sumita ; Mitra, Jiban</creatorcontrib><description>Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.</description><identifier>ISSN: 2347-4688</identifier><identifier>EISSN: 2321-9971</identifier><identifier>DOI: 10.12944/CARJ.5.1.14</identifier><language>eng</language><publisher>Bhopal: Enviro Research Publishers</publisher><subject>Crops ; Cultivars ; Deoxyribonucleic acid ; Divergence ; DNA ; Flax ; Gene polymorphism ; Genetic analysis ; Genetic diversity ; Genetic markers ; Genetic testing ; Genotype &amp; phenotype ; Genotypes ; Heredity ; Linaceae ; Linum ; Linum usitatissimum ; Markers ; Microsatellites ; Morphology ; Multivariate analysis ; Oilseed crops ; Oilseeds ; Plant breeding ; Polymorphism ; Primers ; Reproducibility ; Seeds ; Software ; Taxonomy</subject><ispartof>Current Agriculture Research Journal, 2017-06, Vol.5 (1), p.123-129</ispartof><rights>Copyright Enviro Research Publishers Jun 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</citedby><cites>FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957151912/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957151912?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nag, Sumita</creatorcontrib><creatorcontrib>Mitra, Jiban</creatorcontrib><title>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</title><title>Current Agriculture Research Journal</title><description>Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.</description><subject>Crops</subject><subject>Cultivars</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>DNA</subject><subject>Flax</subject><subject>Gene polymorphism</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic markers</subject><subject>Genetic testing</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Heredity</subject><subject>Linaceae</subject><subject>Linum</subject><subject>Linum usitatissimum</subject><subject>Markers</subject><subject>Microsatellites</subject><subject>Morphology</subject><subject>Multivariate analysis</subject><subject>Oilseed crops</subject><subject>Oilseeds</subject><subject>Plant breeding</subject><subject>Polymorphism</subject><subject>Primers</subject><subject>Reproducibility</subject><subject>Seeds</subject><subject>Software</subject><subject>Taxonomy</subject><issn>2347-4688</issn><issn>2321-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkF9LwzAUxYsoOObe_AABXxRsTdI0fx7HdFPpEMS9Gpr0dmR27UwycX56N-fTuYfz497LSZJLgjNCFWN3k_Hrc1ZkJCPsJBnQnJJUKUFODzMTKeNSniejEFYYY6o4o1QMkvcZdBCdRffuC_wSOguob9C0rb7RPurjbgMBXZeu267RIrhYRReCW-9dmd2gRXSt-3HdEs2d9X2oIrSti4Dmlf8AHy6Ss6ZqA4z-dZgspg9vk8e0fJk9TcZlaimhLGVWEsOM5SyvleSyBoolByMxrkVj8toYK4zCjWXSckE4BwZNZcBKKBpR58Pk6rh34_vPLYSoV_3Wd_uTmqhCkIIoQvfU7ZE6vBo8NHrj3bryO02w_itRH0rUhSaasPwXGFRlOA</recordid><startdate>20170618</startdate><enddate>20170618</enddate><creator>Nag, Sumita</creator><creator>Mitra, Jiban</creator><general>Enviro Research Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170618</creationdate><title>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</title><author>Nag, Sumita ; Mitra, Jiban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crops</topic><topic>Cultivars</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>DNA</topic><topic>Flax</topic><topic>Gene polymorphism</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic markers</topic><topic>Genetic testing</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Heredity</topic><topic>Linaceae</topic><topic>Linum</topic><topic>Linum usitatissimum</topic><topic>Markers</topic><topic>Microsatellites</topic><topic>Morphology</topic><topic>Multivariate analysis</topic><topic>Oilseed crops</topic><topic>Oilseeds</topic><topic>Plant breeding</topic><topic>Polymorphism</topic><topic>Primers</topic><topic>Reproducibility</topic><topic>Seeds</topic><topic>Software</topic><topic>Taxonomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Nag, Sumita</creatorcontrib><creatorcontrib>Mitra, Jiban</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Current Agriculture Research Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nag, Sumita</au><au>Mitra, Jiban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers</atitle><jtitle>Current Agriculture Research Journal</jtitle><date>2017-06-18</date><risdate>2017</risdate><volume>5</volume><issue>1</issue><spage>123</spage><epage>129</epage><pages>123-129</pages><issn>2347-4688</issn><eissn>2321-9971</eissn><abstract>Flax (Linum usitatissimum L.), stoods in position third, being the largest natural fibre crop and simultaneously one of the five preeminent oilseed crops in the world. SSR/microsatellite markers are extensively utilized for genetic diversity analysis and cultivar identification considering their myriad abundance, co-dominant inheritance, steep polymorphism, reproducibility, and comfort of assay by PCR. Ten microsatellites were amplified in 27 genotypes of Flax. The study was undertaken to assess the genetic diversity in flax and to select most diverse genotypes for future breeding program. Primer efficiency parameters were studied. The 10 SSR loci amplified a total of 41 alleles that were used for genetic analysis. Most primers have PIC value greater than 0.5 and the LU6 marker was highly polymorphic PIC = 0.95. Estimates of RP̅ were highest for the primer LU1 (0.68). The maximum MI was observed for the primer LU10 (3.56). The H and D ranged from 0.26 to 1.78 and 0.36 to 5.40, respectively. According to Spearman rank correlation, PIC and MI were most important parameters in assessing the efficiency of whole set of 10 SSR primers. Dendrogram was constructed using the genetic similarity coefficients using UPGMA. PCo-A was also performed in support. Genetic diversity in Flax was revealed at molecular level.</abstract><cop>Bhopal</cop><pub>Enviro Research Publishers</pub><doi>10.12944/CARJ.5.1.14</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2347-4688
ispartof Current Agriculture Research Journal, 2017-06, Vol.5 (1), p.123-129
issn 2347-4688
2321-9971
language eng
recordid cdi_proquest_journals_1957151912
source Publicly Available Content Database
subjects Crops
Cultivars
Deoxyribonucleic acid
Divergence
DNA
Flax
Gene polymorphism
Genetic analysis
Genetic diversity
Genetic markers
Genetic testing
Genotype & phenotype
Genotypes
Heredity
Linaceae
Linum
Linum usitatissimum
Markers
Microsatellites
Morphology
Multivariate analysis
Oilseed crops
Oilseeds
Plant breeding
Polymorphism
Primers
Reproducibility
Seeds
Software
Taxonomy
title Genetic Divergence of Flax Genotypes (Linum Usitatissimum L.) Utilizing Microsatellite Markers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Divergence%20of%20Flax%20Genotypes%20(Linum%20Usitatissimum%20L.)%20Utilizing%20Microsatellite%20Markers&rft.jtitle=Current%20Agriculture%20Research%20Journal&rft.au=Nag,%20Sumita&rft.date=2017-06-18&rft.volume=5&rft.issue=1&rft.spage=123&rft.epage=129&rft.pages=123-129&rft.issn=2347-4688&rft.eissn=2321-9971&rft_id=info:doi/10.12944/CARJ.5.1.14&rft_dat=%3Cproquest_cross%3E1957151912%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2124-4c81b4bc643d9868de2086eb800d7fb3dbbc7b90fc48c67166e4efabec8e5f7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957151912&rft_id=info:pmid/&rfr_iscdi=true