Loading…
Visual Map Construction Using RGB-D Sensors for Image-Based Localization in Indoor Environments
RGB-D sensors capture RGB images and depth images simultaneously, which makes it possible to acquire the depth information at pixel level. This paper focuses on the use of RGB-D sensors to construct a visual map which is an extended dense 3D map containing essential elements for image-based localiza...
Saved in:
Published in: | Journal of sensors 2017-01, Vol.2017 (2017), p.1-18 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RGB-D sensors capture RGB images and depth images simultaneously, which makes it possible to acquire the depth information at pixel level. This paper focuses on the use of RGB-D sensors to construct a visual map which is an extended dense 3D map containing essential elements for image-based localization, such as poses of the database camera, visual features, and 3D structures of the building. Taking advantage of matched visual features and corresponding depth values, a novel local optimization algorithm is proposed to achieve point cloud registration and database camera pose estimation. Next, graph-based optimization is used to obtain the global consistency of the map. On the basis of the visual map, the image-based localization method is investigated, making use of the epipolar constraint. The performance of the visual map construction and the image-based localization are evaluated on typical indoor scenes. The simulation results show that the average position errors of the database camera and the query camera can be limited to within 0.2 meters and 0.9 meters, respectively. |
---|---|
ISSN: | 1687-725X 1687-7268 |
DOI: | 10.1155/2017/8037607 |