Loading…

Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns

Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical...

Full description

Saved in:
Bibliographic Details
Published in:Computational economics 2017-12, Vol.50 (4), p.579-594
Main Authors: Zhou, Jian, Gu, Gao-Feng, Jiang, Zhi-Qiang, Xiong, Xiong, Chen, Wei, Zhang, Wei, Zhou, Wei-Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3
cites cdi_FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3
container_end_page 594
container_issue 4
container_start_page 579
container_title Computational economics
container_volume 50
creator Zhou, Jian
Gu, Gao-Feng
Jiang, Zhi-Qiang
Xiong, Xiong
Chen, Wei
Zhang, Wei
Zhou, Wei-Xing
description Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical models provide a useful tools. Here, we perform computational experiments using a phenomenological order-driven model called the modified Mike–Farmer (MMF) to predict the impacts of order flows on the autocorrelations in ultra-high-frequency returns, quantified by Hurst index H r . Three possible determinants embedded in the MMF model are investigated, including the Hurst index H s of order directions, the Hurst index H x and the power-law tail index α x of the relative prices of placed orders. The computational experiments predict that H r is negatively correlated with α x and H x and positively correlated with H s . In addition, the values of α x and H x have negligible impacts on H r , whereas H s exhibits a dominating impact on H r . The predictions of the MMF model on the dependence of H r upon H s and H x are verified by the empirical results obtained from the order flow data of 43 Chinese stocks.
doi_str_mv 10.1007/s10614-016-9612-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1957689941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957689941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8En_EY1W1FKkSiNLZShynTUmTYDuI_ntcysDC9JZz7306CN0CvQdK5YMHKoARCoIoAQmBMzQCLhOilGTnaERVIomkSl2iK-93lFIOSTJCn9Nu3w8hD3XX5g2effXW1XvbBo9XgzHW-2pomgN-cbasTcBha_Fsb93GtsbirsKTIXSmc842Px0e1y1eN8HlZFFvtmTu7McQ2QNeRe4dv9owuNZfo4sqb7y9-b1jtJ7P3qYLsnx-fJpOlsQwJgOBErhlRSmUUiKhUHHOGVWiMGXOZJGWpswqVvIiy2wulEylSg1kTEjF0jSr0jG6O_X2rot_-KB3XdyPkxoUlyJTikGk4EQZ13nvbKX7KCF3Bw1UH_Xqk14d9eqjXn3MJKeMj2y7se5P87-hb7TLfs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957689941</pqid></control><display><type>article</type><title>Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Global</source><source>Springer Nature</source><source>EconLit with Full Text【Remote access available】</source><creator>Zhou, Jian ; Gu, Gao-Feng ; Jiang, Zhi-Qiang ; Xiong, Xiong ; Chen, Wei ; Zhang, Wei ; Zhou, Wei-Xing</creator><creatorcontrib>Zhou, Jian ; Gu, Gao-Feng ; Jiang, Zhi-Qiang ; Xiong, Xiong ; Chen, Wei ; Zhang, Wei ; Zhou, Wei-Xing</creatorcontrib><description>Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical models provide a useful tools. Here, we perform computational experiments using a phenomenological order-driven model called the modified Mike–Farmer (MMF) to predict the impacts of order flows on the autocorrelations in ultra-high-frequency returns, quantified by Hurst index H r . Three possible determinants embedded in the MMF model are investigated, including the Hurst index H s of order directions, the Hurst index H x and the power-law tail index α x of the relative prices of placed orders. The computational experiments predict that H r is negatively correlated with α x and H x and positively correlated with H s . In addition, the values of α x and H x have negligible impacts on H r , whereas H s exhibits a dominating impact on H r . The predictions of the MMF model on the dependence of H r upon H s and H x are verified by the empirical results obtained from the order flow data of 43 Chinese stocks.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-016-9612-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive systems ; Behavioral/Experimental Economics ; Complex systems ; Computation ; Computer Appl. in Social and Behavioral Sciences ; Economic systems ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Experiments ; Math Applications in Computer Science ; Mathematical models ; Operations Research/Decision Theory ; Power ; Prices ; Software</subject><ispartof>Computational economics, 2017-12, Vol.50 (4), p.579-594</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Computational Economics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3</citedby><cites>FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3</cites><orcidid>0000-0002-8952-8228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957689941/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957689941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,12847,27924,27925,33223,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Gu, Gao-Feng</creatorcontrib><creatorcontrib>Jiang, Zhi-Qiang</creatorcontrib><creatorcontrib>Xiong, Xiong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhou, Wei-Xing</creatorcontrib><title>Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical models provide a useful tools. Here, we perform computational experiments using a phenomenological order-driven model called the modified Mike–Farmer (MMF) to predict the impacts of order flows on the autocorrelations in ultra-high-frequency returns, quantified by Hurst index H r . Three possible determinants embedded in the MMF model are investigated, including the Hurst index H s of order directions, the Hurst index H x and the power-law tail index α x of the relative prices of placed orders. The computational experiments predict that H r is negatively correlated with α x and H x and positively correlated with H s . In addition, the values of α x and H x have negligible impacts on H r , whereas H s exhibits a dominating impact on H r . The predictions of the MMF model on the dependence of H r upon H s and H x are verified by the empirical results obtained from the order flow data of 43 Chinese stocks.</description><subject>Adaptive systems</subject><subject>Behavioral/Experimental Economics</subject><subject>Complex systems</subject><subject>Computation</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic systems</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Experiments</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Operations Research/Decision Theory</subject><subject>Power</subject><subject>Prices</subject><subject>Software</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp1kD1PwzAURS0EEqXwA9gsMRv8En_EY1W1FKkSiNLZShynTUmTYDuI_ntcysDC9JZz7306CN0CvQdK5YMHKoARCoIoAQmBMzQCLhOilGTnaERVIomkSl2iK-93lFIOSTJCn9Nu3w8hD3XX5g2effXW1XvbBo9XgzHW-2pomgN-cbasTcBha_Fsb93GtsbirsKTIXSmc842Px0e1y1eN8HlZFFvtmTu7McQ2QNeRe4dv9owuNZfo4sqb7y9-b1jtJ7P3qYLsnx-fJpOlsQwJgOBErhlRSmUUiKhUHHOGVWiMGXOZJGWpswqVvIiy2wulEylSg1kTEjF0jSr0jG6O_X2rot_-KB3XdyPkxoUlyJTikGk4EQZ13nvbKX7KCF3Bw1UH_Xqk14d9eqjXn3MJKeMj2y7se5P87-hb7TLfs0</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Zhou, Jian</creator><creator>Gu, Gao-Feng</creator><creator>Jiang, Zhi-Qiang</creator><creator>Xiong, Xiong</creator><creator>Chen, Wei</creator><creator>Zhang, Wei</creator><creator>Zhou, Wei-Xing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8952-8228</orcidid></search><sort><creationdate>20171201</creationdate><title>Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns</title><author>Zhou, Jian ; Gu, Gao-Feng ; Jiang, Zhi-Qiang ; Xiong, Xiong ; Chen, Wei ; Zhang, Wei ; Zhou, Wei-Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive systems</topic><topic>Behavioral/Experimental Economics</topic><topic>Complex systems</topic><topic>Computation</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic systems</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Experiments</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Operations Research/Decision Theory</topic><topic>Power</topic><topic>Prices</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Gu, Gao-Feng</creatorcontrib><creatorcontrib>Jiang, Zhi-Qiang</creatorcontrib><creatorcontrib>Xiong, Xiong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhou, Wei-Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jian</au><au>Gu, Gao-Feng</au><au>Jiang, Zhi-Qiang</au><au>Xiong, Xiong</au><au>Chen, Wei</au><au>Zhang, Wei</au><au>Zhou, Wei-Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>50</volume><issue>4</issue><spage>579</spage><epage>594</epage><pages>579-594</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Social and economic systems are complex adaptive systems, in which heterogenous agents interact and evolve in a self-organized manner, and macroscopic laws emerge from microscopic properties. To understand the behaviors of complex systems, computational experiments based on physical and mathematical models provide a useful tools. Here, we perform computational experiments using a phenomenological order-driven model called the modified Mike–Farmer (MMF) to predict the impacts of order flows on the autocorrelations in ultra-high-frequency returns, quantified by Hurst index H r . Three possible determinants embedded in the MMF model are investigated, including the Hurst index H s of order directions, the Hurst index H x and the power-law tail index α x of the relative prices of placed orders. The computational experiments predict that H r is negatively correlated with α x and H x and positively correlated with H s . In addition, the values of α x and H x have negligible impacts on H r , whereas H s exhibits a dominating impact on H r . The predictions of the MMF model on the dependence of H r upon H s and H x are verified by the empirical results obtained from the order flow data of 43 Chinese stocks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-016-9612-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8952-8228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2017-12, Vol.50 (4), p.579-594
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_1957689941
source International Bibliography of the Social Sciences (IBSS); ABI/INFORM Global; Springer Nature; EconLit with Full Text【Remote access available】
subjects Adaptive systems
Behavioral/Experimental Economics
Complex systems
Computation
Computer Appl. in Social and Behavioral Sciences
Economic systems
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Experiments
Math Applications in Computer Science
Mathematical models
Operations Research/Decision Theory
Power
Prices
Software
title Computational Experiments Successfully Predict the Emergence of Autocorrelations in Ultra-High-Frequency Stock Returns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Experiments%20Successfully%20Predict%20the%20Emergence%20of%20Autocorrelations%20in%20Ultra-High-Frequency%20Stock%20Returns&rft.jtitle=Computational%20economics&rft.au=Zhou,%20Jian&rft.date=2017-12-01&rft.volume=50&rft.issue=4&rft.spage=579&rft.epage=594&rft.pages=579-594&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-016-9612-1&rft_dat=%3Cproquest_cross%3E1957689941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-1d15e4bd69996201f5554096bcda47b3dcd8f4d5b88ea6973793c1846794338f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957689941&rft_id=info:pmid/&rfr_iscdi=true