Loading…
Solution of large scale algebraic matrix riccati equations by use of hierarchical matrices
In previous papers, a class of hierarchical matrices ([Hamiltonian (script capital H)]-matrices) is introduced which are data-sparse and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new approach to exploit the [Hamiltonian (script capital H)]-matrix str...
Saved in:
Published in: | Computing 2003-04, Vol.70 (2), p.121-165 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-6a408c943dcec8936297507c642ed7929e397e84c8e11e968f59168d1f68b1da3 |
---|---|
cites | |
container_end_page | 165 |
container_issue | 2 |
container_start_page | 121 |
container_title | Computing |
container_volume | 70 |
creator | GRASEDYCK, L HACKBUSCH, W KHOROMSKIJ, B. N |
description | In previous papers, a class of hierarchical matrices ([Hamiltonian (script capital H)]-matrices) is introduced which are data-sparse and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new approach to exploit the [Hamiltonian (script capital H)]-matrix structure for the solution of large scale Lyapunov and Riccati equations as they typically arise for optimal control problems where the constraint is a partial differential equation of elliptic type. This approach leads to an algorithm of linear-logarithmic complexity in the size of the matrices. |
doi_str_mv | 10.1007/s00607-002-1470-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_195863989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>701009831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6a408c943dcec8936297507c642ed7929e397e84c8e11e968f59168d1f68b1da3</originalsourceid><addsrcrecordid>eNpFkEtLAzEURoMoWKs_wF0QXEZvJpk8liK-oOBCBXET0vROmzLttMkM2H_vDFNwdTffORcOIdcc7jiAvs8ACjQDKBiXGhickAmXQrESSn1KJgAcmDTl9zm5yHkN_VAYOyE_H03dtbHZ0qaitU9LpDn4GqmvlzhPPga68W2KvzTFEHwbKe47PwCZzg-0yziAq4jJp7CKPTruA-ZLclb5OuPV8U7J1_PT5-Mrm72_vD0-zFgQUrRMeQkmWCkWAYOxQhVWl6CDkgUutC0sCqvRyGCQc7TKVKXlyix4pcycL7yYkpvRu0vNvsPcunXTpW3_0nFbGiVsb50SPo5CanJOWLldihufDo6DGwq6saDrw7ihoIOeuT2K_dCkSn4bYv4HpS7LQnDxB9-NcJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195863989</pqid></control><display><type>article</type><title>Solution of large scale algebraic matrix riccati equations by use of hierarchical matrices</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>GRASEDYCK, L ; HACKBUSCH, W ; KHOROMSKIJ, B. N</creator><creatorcontrib>GRASEDYCK, L ; HACKBUSCH, W ; KHOROMSKIJ, B. N</creatorcontrib><description>In previous papers, a class of hierarchical matrices ([Hamiltonian (script capital H)]-matrices) is introduced which are data-sparse and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new approach to exploit the [Hamiltonian (script capital H)]-matrix structure for the solution of large scale Lyapunov and Riccati equations as they typically arise for optimal control problems where the constraint is a partial differential equation of elliptic type. This approach leads to an algorithm of linear-logarithmic complexity in the size of the matrices.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-002-1470-0</identifier><identifier>CODEN: CMPTA2</identifier><language>eng</language><publisher>Wien: Springer</publisher><subject>Algebra ; Approximation ; Exact sciences and technology ; Mathematics ; Multiplication & division ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Sparsity</subject><ispartof>Computing, 2003-04, Vol.70 (2), p.121-165</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6a408c943dcec8936297507c642ed7929e397e84c8e11e968f59168d1f68b1da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/195863989/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/195863989?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14755231$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRASEDYCK, L</creatorcontrib><creatorcontrib>HACKBUSCH, W</creatorcontrib><creatorcontrib>KHOROMSKIJ, B. N</creatorcontrib><title>Solution of large scale algebraic matrix riccati equations by use of hierarchical matrices</title><title>Computing</title><description>In previous papers, a class of hierarchical matrices ([Hamiltonian (script capital H)]-matrices) is introduced which are data-sparse and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new approach to exploit the [Hamiltonian (script capital H)]-matrix structure for the solution of large scale Lyapunov and Riccati equations as they typically arise for optimal control problems where the constraint is a partial differential equation of elliptic type. This approach leads to an algorithm of linear-logarithmic complexity in the size of the matrices.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Multiplication & division</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Sparsity</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpFkEtLAzEURoMoWKs_wF0QXEZvJpk8liK-oOBCBXET0vROmzLttMkM2H_vDFNwdTffORcOIdcc7jiAvs8ACjQDKBiXGhickAmXQrESSn1KJgAcmDTl9zm5yHkN_VAYOyE_H03dtbHZ0qaitU9LpDn4GqmvlzhPPga68W2KvzTFEHwbKe47PwCZzg-0yziAq4jJp7CKPTruA-ZLclb5OuPV8U7J1_PT5-Mrm72_vD0-zFgQUrRMeQkmWCkWAYOxQhVWl6CDkgUutC0sCqvRyGCQc7TKVKXlyix4pcycL7yYkpvRu0vNvsPcunXTpW3_0nFbGiVsb50SPo5CanJOWLldihufDo6DGwq6saDrw7ihoIOeuT2K_dCkSn4bYv4HpS7LQnDxB9-NcJI</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>GRASEDYCK, L</creator><creator>HACKBUSCH, W</creator><creator>KHOROMSKIJ, B. N</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20030401</creationdate><title>Solution of large scale algebraic matrix riccati equations by use of hierarchical matrices</title><author>GRASEDYCK, L ; HACKBUSCH, W ; KHOROMSKIJ, B. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6a408c943dcec8936297507c642ed7929e397e84c8e11e968f59168d1f68b1da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Multiplication & division</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRASEDYCK, L</creatorcontrib><creatorcontrib>HACKBUSCH, W</creatorcontrib><creatorcontrib>KHOROMSKIJ, B. N</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRASEDYCK, L</au><au>HACKBUSCH, W</au><au>KHOROMSKIJ, B. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of large scale algebraic matrix riccati equations by use of hierarchical matrices</atitle><jtitle>Computing</jtitle><date>2003-04-01</date><risdate>2003</risdate><volume>70</volume><issue>2</issue><spage>121</spage><epage>165</epage><pages>121-165</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><coden>CMPTA2</coden><abstract>In previous papers, a class of hierarchical matrices ([Hamiltonian (script capital H)]-matrices) is introduced which are data-sparse and allow an approximate matrix arithmetic of almost optimal complexity. Here, we investigate a new approach to exploit the [Hamiltonian (script capital H)]-matrix structure for the solution of large scale Lyapunov and Riccati equations as they typically arise for optimal control problems where the constraint is a partial differential equation of elliptic type. This approach leads to an algorithm of linear-logarithmic complexity in the size of the matrices.</abstract><cop>Wien</cop><pub>Springer</pub><doi>10.1007/s00607-002-1470-0</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2003-04, Vol.70 (2), p.121-165 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_195863989 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global; Springer Link |
subjects | Algebra Approximation Exact sciences and technology Mathematics Multiplication & division Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Sparsity |
title | Solution of large scale algebraic matrix riccati equations by use of hierarchical matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20large%20scale%20algebraic%20matrix%20riccati%20equations%20by%20use%20of%20hierarchical%20matrices&rft.jtitle=Computing&rft.au=GRASEDYCK,%20L&rft.date=2003-04-01&rft.volume=70&rft.issue=2&rft.spage=121&rft.epage=165&rft.pages=121-165&rft.issn=0010-485X&rft.eissn=1436-5057&rft.coden=CMPTA2&rft_id=info:doi/10.1007/s00607-002-1470-0&rft_dat=%3Cproquest_cross%3E701009831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-6a408c943dcec8936297507c642ed7929e397e84c8e11e968f59168d1f68b1da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195863989&rft_id=info:pmid/&rfr_iscdi=true |