Loading…
Linear network coding
Consider a communication network in which certain source nodes multicast information to other nodes on the network in the multihop fashion where every node can pass on any of its received data to others. We are interested in how fast each node can receive the complete information, or equivalently, w...
Saved in:
Published in: | IEEE transactions on information theory 2003-02, Vol.49 (2), p.371-381 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503 |
container_end_page | 381 |
container_issue | 2 |
container_start_page | 371 |
container_title | IEEE transactions on information theory |
container_volume | 49 |
creator | Li, S.-Y.R. Yeung, R.W. Ning Cai |
description | Consider a communication network in which certain source nodes multicast information to other nodes on the network in the multihop fashion where every node can pass on any of its received data to others. We are interested in how fast each node can receive the complete information, or equivalently, what the information rate arriving at each node is. Allowing a node to encode its received data before passing it on, the question involves optimization of the multicast mechanisms at the nodes. Among the simplest coding schemes is linear coding, which regards a block of data as a vector over a certain base field and allows a node to apply a linear transformation to a vector before passing it on. We formulate this multicast problem and prove that linear coding suffices to achieve the optimum, which is the max-flow from the source to each receiving node. |
doi_str_mv | 10.1109/TIT.2002.807285 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_195889284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1176612</ieee_id><sourcerecordid>28343132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKtH8eClePC2bTJJdidHKX4UCl7qOewmE9na7takRfz3pqwgeBqGed6Z4WHsRvCpENzMVovVFDiHKfIKUJ-wkdC6Kkyp1SkbcS6wMErhObtIaZ1bpQWM2PWy7aiOk472X338mLjet937JTsL9SbR1W8ds7enx9X8pVi-Pi_mD8vCSVHtCzQYvJHC6BIbQy403DcenFLGax_KSkpXceXJYUAdHHAoIQ-hdmQazeWY3Q97d7H_PFDa222bHG02dUf9IVlAqaSQkMG7f-C6P8Qu_2bzdUQDqDI0GyAX-5QiBbuL7baO31Zwe3RksyN7dGQHRzlxOyRaIvqjRVWWAuQPON9f8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195889284</pqid></control><display><type>article</type><title>Linear network coding</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, S.-Y.R. ; Yeung, R.W. ; Ning Cai</creator><creatorcontrib>Li, S.-Y.R. ; Yeung, R.W. ; Ning Cai</creatorcontrib><description>Consider a communication network in which certain source nodes multicast information to other nodes on the network in the multihop fashion where every node can pass on any of its received data to others. We are interested in how fast each node can receive the complete information, or equivalently, what the information rate arriving at each node is. Allowing a node to encode its received data before passing it on, the question involves optimization of the multicast mechanisms at the nodes. Among the simplest coding schemes is linear coding, which regards a block of data as a vector over a certain base field and allows a node to apply a linear transformation to a vector before passing it on. We formulate this multicast problem and prove that linear coding suffices to achieve the optimum, which is the max-flow from the source to each receiving node.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.807285</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel capacity ; Communication networks ; Communication switching ; Conferences ; Cryptography ; Information rates ; Information theory ; Network coding ; Routing ; Spread spectrum communication ; Vectors</subject><ispartof>IEEE transactions on information theory, 2003-02, Vol.49 (2), p.371-381</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503</citedby><cites>FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1176612$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, S.-Y.R.</creatorcontrib><creatorcontrib>Yeung, R.W.</creatorcontrib><creatorcontrib>Ning Cai</creatorcontrib><title>Linear network coding</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Consider a communication network in which certain source nodes multicast information to other nodes on the network in the multihop fashion where every node can pass on any of its received data to others. We are interested in how fast each node can receive the complete information, or equivalently, what the information rate arriving at each node is. Allowing a node to encode its received data before passing it on, the question involves optimization of the multicast mechanisms at the nodes. Among the simplest coding schemes is linear coding, which regards a block of data as a vector over a certain base field and allows a node to apply a linear transformation to a vector before passing it on. We formulate this multicast problem and prove that linear coding suffices to achieve the optimum, which is the max-flow from the source to each receiving node.</description><subject>Channel capacity</subject><subject>Communication networks</subject><subject>Communication switching</subject><subject>Conferences</subject><subject>Cryptography</subject><subject>Information rates</subject><subject>Information theory</subject><subject>Network coding</subject><subject>Routing</subject><subject>Spread spectrum communication</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWKtH8eClePC2bTJJdidHKX4UCl7qOewmE9na7takRfz3pqwgeBqGed6Z4WHsRvCpENzMVovVFDiHKfIKUJ-wkdC6Kkyp1SkbcS6wMErhObtIaZ1bpQWM2PWy7aiOk472X338mLjet937JTsL9SbR1W8ds7enx9X8pVi-Pi_mD8vCSVHtCzQYvJHC6BIbQy403DcenFLGax_KSkpXceXJYUAdHHAoIQ-hdmQazeWY3Q97d7H_PFDa222bHG02dUf9IVlAqaSQkMG7f-C6P8Qu_2bzdUQDqDI0GyAX-5QiBbuL7baO31Zwe3RksyN7dGQHRzlxOyRaIvqjRVWWAuQPON9f8Q</recordid><startdate>200302</startdate><enddate>200302</enddate><creator>Li, S.-Y.R.</creator><creator>Yeung, R.W.</creator><creator>Ning Cai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200302</creationdate><title>Linear network coding</title><author>Li, S.-Y.R. ; Yeung, R.W. ; Ning Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Channel capacity</topic><topic>Communication networks</topic><topic>Communication switching</topic><topic>Conferences</topic><topic>Cryptography</topic><topic>Information rates</topic><topic>Information theory</topic><topic>Network coding</topic><topic>Routing</topic><topic>Spread spectrum communication</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, S.-Y.R.</creatorcontrib><creatorcontrib>Yeung, R.W.</creatorcontrib><creatorcontrib>Ning Cai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, S.-Y.R.</au><au>Yeung, R.W.</au><au>Ning Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear network coding</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2003-02</date><risdate>2003</risdate><volume>49</volume><issue>2</issue><spage>371</spage><epage>381</epage><pages>371-381</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Consider a communication network in which certain source nodes multicast information to other nodes on the network in the multihop fashion where every node can pass on any of its received data to others. We are interested in how fast each node can receive the complete information, or equivalently, what the information rate arriving at each node is. Allowing a node to encode its received data before passing it on, the question involves optimization of the multicast mechanisms at the nodes. Among the simplest coding schemes is linear coding, which regards a block of data as a vector over a certain base field and allows a node to apply a linear transformation to a vector before passing it on. We formulate this multicast problem and prove that linear coding suffices to achieve the optimum, which is the max-flow from the source to each receiving node.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.807285</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2003-02, Vol.49 (2), p.371-381 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195889284 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Channel capacity Communication networks Communication switching Conferences Cryptography Information rates Information theory Network coding Routing Spread spectrum communication Vectors |
title | Linear network coding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20network%20coding&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Li,%20S.-Y.R.&rft.date=2003-02&rft.volume=49&rft.issue=2&rft.spage=371&rft.epage=381&rft.pages=371-381&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.807285&rft_dat=%3Cproquest_ieee_%3E28343132%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-898fd9319568b9ecfb0dbd2c449d5df6733c704dec8f85fc202624492ace9b503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195889284&rft_id=info:pmid/&rft_ieee_id=1176612&rfr_iscdi=true |