Loading…
On the k-Error Linear Complexity of p^ -Periodic Binary Sequences
In this correspondence, we study the statistical stability properties of p m -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p 2 . We show that their linear complexity and k-error linear complexi...
Saved in:
Published in: | IEEE transactions on information theory 2007-06, Vol.53 (6), p.2297-2304 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03 |
container_end_page | 2304 |
container_issue | 6 |
container_start_page | 2297 |
container_title | IEEE transactions on information theory |
container_volume | 53 |
creator | Han, Yun Kyoung Chung, Jin-Ho Yang, Kyeongcheol |
description | In this correspondence, we study the statistical stability properties of p m -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p 2 . We show that their linear complexity and k-error linear complexity take a value only from some specific ranges. We then present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity in a new viewpoint different from the approach by Meidl. We also derive the distribution of p m -periodic binary sequences with specific k-error linear complexity. Finally, we get an explicit formula for the expectation value of the k-error linear complexity and give its lower and upper bounds, when k les [p/2]. |
doi_str_mv | 10.1109/TIT.2007.896863 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_195920009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4215139</ieee_id><sourcerecordid>1280599081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnD16C97T53uRYS9VCoYL1athmZ3Fru1mTLdj_3siKp2HgvXnzfgjdMjphjNrpZrmZcEqLibHaaHGGRkypglit5DkaUcoMsVKaS3SV0i6vUjE-QrN1i_sPwJ9kEWOIeNW0UEY8D4duD99Nf8Khxt07Ji8Qm1A1Hj80bRlP-BW-jtB6SNfooi73CW7-5hi9PS4282eyWj8t57MV8ULJnlTK28JILjX33G631CiQpiqohgpEWVntmTaca156rQvqmaoseGMEl3RbUzFG98PdLoYcnXq3C8fY5kjHrLK5OrVZNB1EPoaUItSui80h_-sYdb-YXMbkfjG5AVN23A2OBgD-1ZIzxYQVP-3xYU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195920009</pqid></control><display><type>article</type><title>On the k-Error Linear Complexity of p^ -Periodic Binary Sequences</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Han, Yun Kyoung ; Chung, Jin-Ho ; Yang, Kyeongcheol</creator><creatorcontrib>Han, Yun Kyoung ; Chung, Jin-Ho ; Yang, Kyeongcheol</creatorcontrib><description>In this correspondence, we study the statistical stability properties of p m -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p 2 . We show that their linear complexity and k-error linear complexity take a value only from some specific ranges. We then present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity in a new viewpoint different from the approach by Meidl. We also derive the distribution of p m -periodic binary sequences with specific k-error linear complexity. Finally, we get an explicit formula for the expectation value of the k-error linear complexity and give its lower and upper bounds, when k les [p/2].</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2007.896863</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Binary sequences ; Binary system ; Cryptography ; Electrical engineering ; Electronics ; Galois fields ; Hamming weight ; Information systems ; Information technology ; k -error linear complexity ; linear complexity ; Microwave integrated circuits ; OFDM ; Optical wavelength conversion ; periodic sequences ; Polynomials ; Random sequences ; Stability ; stream ciphers ; XWLI algorithm</subject><ispartof>IEEE transactions on information theory, 2007-06, Vol.53 (6), p.2297-2304</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03</citedby><cites>FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4215139$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Han, Yun Kyoung</creatorcontrib><creatorcontrib>Chung, Jin-Ho</creatorcontrib><creatorcontrib>Yang, Kyeongcheol</creatorcontrib><title>On the k-Error Linear Complexity of p^ -Periodic Binary Sequences</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In this correspondence, we study the statistical stability properties of p m -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p 2 . We show that their linear complexity and k-error linear complexity take a value only from some specific ranges. We then present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity in a new viewpoint different from the approach by Meidl. We also derive the distribution of p m -periodic binary sequences with specific k-error linear complexity. Finally, we get an explicit formula for the expectation value of the k-error linear complexity and give its lower and upper bounds, when k les [p/2].</description><subject>Binary sequences</subject><subject>Binary system</subject><subject>Cryptography</subject><subject>Electrical engineering</subject><subject>Electronics</subject><subject>Galois fields</subject><subject>Hamming weight</subject><subject>Information systems</subject><subject>Information technology</subject><subject>k -error linear complexity</subject><subject>linear complexity</subject><subject>Microwave integrated circuits</subject><subject>OFDM</subject><subject>Optical wavelength conversion</subject><subject>periodic sequences</subject><subject>Polynomials</subject><subject>Random sequences</subject><subject>Stability</subject><subject>stream ciphers</subject><subject>XWLI algorithm</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKtnD16C97T53uRYS9VCoYL1athmZ3Fru1mTLdj_3siKp2HgvXnzfgjdMjphjNrpZrmZcEqLibHaaHGGRkypglit5DkaUcoMsVKaS3SV0i6vUjE-QrN1i_sPwJ9kEWOIeNW0UEY8D4duD99Nf8Khxt07Ji8Qm1A1Hj80bRlP-BW-jtB6SNfooi73CW7-5hi9PS4282eyWj8t57MV8ULJnlTK28JILjX33G631CiQpiqohgpEWVntmTaca156rQvqmaoseGMEl3RbUzFG98PdLoYcnXq3C8fY5kjHrLK5OrVZNB1EPoaUItSui80h_-sYdb-YXMbkfjG5AVN23A2OBgD-1ZIzxYQVP-3xYU0</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Han, Yun Kyoung</creator><creator>Chung, Jin-Ho</creator><creator>Yang, Kyeongcheol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200706</creationdate><title>On the k-Error Linear Complexity of p^ -Periodic Binary Sequences</title><author>Han, Yun Kyoung ; Chung, Jin-Ho ; Yang, Kyeongcheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Binary sequences</topic><topic>Binary system</topic><topic>Cryptography</topic><topic>Electrical engineering</topic><topic>Electronics</topic><topic>Galois fields</topic><topic>Hamming weight</topic><topic>Information systems</topic><topic>Information technology</topic><topic>k -error linear complexity</topic><topic>linear complexity</topic><topic>Microwave integrated circuits</topic><topic>OFDM</topic><topic>Optical wavelength conversion</topic><topic>periodic sequences</topic><topic>Polynomials</topic><topic>Random sequences</topic><topic>Stability</topic><topic>stream ciphers</topic><topic>XWLI algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yun Kyoung</creatorcontrib><creatorcontrib>Chung, Jin-Ho</creatorcontrib><creatorcontrib>Yang, Kyeongcheol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yun Kyoung</au><au>Chung, Jin-Ho</au><au>Yang, Kyeongcheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the k-Error Linear Complexity of p^ -Periodic Binary Sequences</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2007-06</date><risdate>2007</risdate><volume>53</volume><issue>6</issue><spage>2297</spage><epage>2304</epage><pages>2297-2304</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In this correspondence, we study the statistical stability properties of p m -periodic binary sequences in terms of their linear complexity and k-error linear complexity, where p is n prime number and 2 is a primitive root modulo p 2 . We show that their linear complexity and k-error linear complexity take a value only from some specific ranges. We then present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity in a new viewpoint different from the approach by Meidl. We also derive the distribution of p m -periodic binary sequences with specific k-error linear complexity. Finally, we get an explicit formula for the expectation value of the k-error linear complexity and give its lower and upper bounds, when k les [p/2].</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2007.896863</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2007-06, Vol.53 (6), p.2297-2304 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195920009 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Binary sequences Binary system Cryptography Electrical engineering Electronics Galois fields Hamming weight Information systems Information technology k -error linear complexity linear complexity Microwave integrated circuits OFDM Optical wavelength conversion periodic sequences Polynomials Random sequences Stability stream ciphers XWLI algorithm |
title | On the k-Error Linear Complexity of p^ -Periodic Binary Sequences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20k-Error%20Linear%20Complexity%20of%20p%5E%20-Periodic%20Binary%20Sequences&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Han,%20Yun%20Kyoung&rft.date=2007-06&rft.volume=53&rft.issue=6&rft.spage=2297&rft.epage=2304&rft.pages=2297-2304&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2007.896863&rft_dat=%3Cproquest_ieee_%3E1280599081%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-d5c97842462c29bb085e48d706ede3ad96c1682262ac6670c15d9ec883240bf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195920009&rft_id=info:pmid/&rft_ieee_id=4215139&rfr_iscdi=true |