Loading…
Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof
New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the...
Saved in:
Published in: | IEEE transactions on information theory 2009-07, Vol.55 (7), p.3375-3387 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943 |
container_end_page | 3387 |
container_issue | 7 |
container_start_page | 3375 |
container_title | IEEE transactions on information theory |
container_volume | 55 |
creator | Dong Yang Horodecki, K. Horodecki, M. Horodecki, P. Oppenheim, J. Wei Song |
description | New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement. |
doi_str_mv | 10.1109/TIT.2009.2021373 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_195935283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075874</ieee_id><sourcerecordid>869848438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</originalsourceid><addsrcrecordid>eNpdkEFrGzEQhUVoIW6aeyCXpVB6WldaSSvp2Bq3DcQUEucsJrujZMNasiVtSP99ZWx8yGWG4X3zmHmEXDE6Z4ya7-ub9byh1JTSMK74GZkxKVVtWik-kBmlTNdGCH1OPqX0UkYhWTMj7n43QXrGvlr6DP5pxA36XLkQq9U05mELMQ8Zq_sMGVMF_h24QkhTLMpPSMUk-Co_Y7Ua3sqwCP4V36q7ENxn8tHBmPDy2C_Iw6_levGnvv37-2bx47buRCtzLY02rdLokPWKG3SPplMdGlQgsHWCOS0ee0cZ7bHffwO9gA4YZ60pvwt-Qb4dfLcx7CZM2W6G1OE4gscwJatbo4UWXBfyyzvyJUzRl-MsM9Jw2WheIHqAuhhSiujsNg4biP8so3Yfuy2x233s9hh7Wfl69IXUwegi-G5Ip72G6aalihbu-sANiHiSJVVSK8H_A5Nhi5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195935283</pqid></control><display><type>article</type><title>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</title><source>IEEE Xplore (Online service)</source><creator>Dong Yang ; Horodecki, K. ; Horodecki, M. ; Horodecki, P. ; Oppenheim, J. ; Wei Song</creator><creatorcontrib>Dong Yang ; Horodecki, K. ; Horodecki, M. ; Horodecki, P. ; Oppenheim, J. ; Wei Song</creatorcontrib><description>New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2021373</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; C-squashed entanglement ; Cryptography ; Decomposition ; Density ; Density measurement ; Entanglement ; Entropy ; Exact sciences and technology ; Extraterrestrial measurements ; Infimum ; Information processing ; Information theory ; Information, signal and communications theory ; Mathematics ; Matrix decomposition ; Measurement ; Measurement standards ; mixed convex roof ; multipartite distillable key ; Mutual information ; Optimization ; Optimization methods ; Optimization techniques ; Physics ; Roofs ; Signal and communications theory ; squashed entanglement ; Telecommunications and information theory ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3375-3387</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</citedby><cites>FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21826070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong Yang</creatorcontrib><creatorcontrib>Horodecki, K.</creatorcontrib><creatorcontrib>Horodecki, M.</creatorcontrib><creatorcontrib>Horodecki, P.</creatorcontrib><creatorcontrib>Oppenheim, J.</creatorcontrib><creatorcontrib>Wei Song</creatorcontrib><title>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.</description><subject>Applied sciences</subject><subject>C-squashed entanglement</subject><subject>Cryptography</subject><subject>Decomposition</subject><subject>Density</subject><subject>Density measurement</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Infimum</subject><subject>Information processing</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematics</subject><subject>Matrix decomposition</subject><subject>Measurement</subject><subject>Measurement standards</subject><subject>mixed convex roof</subject><subject>multipartite distillable key</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Roofs</subject><subject>Signal and communications theory</subject><subject>squashed entanglement</subject><subject>Telecommunications and information theory</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkEFrGzEQhUVoIW6aeyCXpVB6WldaSSvp2Bq3DcQUEucsJrujZMNasiVtSP99ZWx8yGWG4X3zmHmEXDE6Z4ya7-ub9byh1JTSMK74GZkxKVVtWik-kBmlTNdGCH1OPqX0UkYhWTMj7n43QXrGvlr6DP5pxA36XLkQq9U05mELMQ8Zq_sMGVMF_h24QkhTLMpPSMUk-Co_Y7Ua3sqwCP4V36q7ENxn8tHBmPDy2C_Iw6_levGnvv37-2bx47buRCtzLY02rdLokPWKG3SPplMdGlQgsHWCOS0ee0cZ7bHffwO9gA4YZ60pvwt-Qb4dfLcx7CZM2W6G1OE4gscwJatbo4UWXBfyyzvyJUzRl-MsM9Jw2WheIHqAuhhSiujsNg4biP8so3Yfuy2x233s9hh7Wfl69IXUwegi-G5Ip72G6aalihbu-sANiHiSJVVSK8H_A5Nhi5Q</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dong Yang</creator><creator>Horodecki, K.</creator><creator>Horodecki, M.</creator><creator>Horodecki, P.</creator><creator>Oppenheim, J.</creator><creator>Wei Song</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</title><author>Dong Yang ; Horodecki, K. ; Horodecki, M. ; Horodecki, P. ; Oppenheim, J. ; Wei Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>C-squashed entanglement</topic><topic>Cryptography</topic><topic>Decomposition</topic><topic>Density</topic><topic>Density measurement</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Infimum</topic><topic>Information processing</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematics</topic><topic>Matrix decomposition</topic><topic>Measurement</topic><topic>Measurement standards</topic><topic>mixed convex roof</topic><topic>multipartite distillable key</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Roofs</topic><topic>Signal and communications theory</topic><topic>squashed entanglement</topic><topic>Telecommunications and information theory</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong Yang</creatorcontrib><creatorcontrib>Horodecki, K.</creatorcontrib><creatorcontrib>Horodecki, M.</creatorcontrib><creatorcontrib>Horodecki, P.</creatorcontrib><creatorcontrib>Oppenheim, J.</creatorcontrib><creatorcontrib>Wei Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong Yang</au><au>Horodecki, K.</au><au>Horodecki, M.</au><au>Horodecki, P.</au><au>Oppenheim, J.</au><au>Wei Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>55</volume><issue>7</issue><spage>3375</spage><epage>3387</epage><pages>3375-3387</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2021373</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3375-3387 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_195935283 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences C-squashed entanglement Cryptography Decomposition Density Density measurement Entanglement Entropy Exact sciences and technology Extraterrestrial measurements Infimum Information processing Information theory Information, signal and communications theory Mathematics Matrix decomposition Measurement Measurement standards mixed convex roof multipartite distillable key Mutual information Optimization Optimization methods Optimization techniques Physics Roofs Signal and communications theory squashed entanglement Telecommunications and information theory Upper bound Upper bounds |
title | Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Squashed%20Entanglement%20for%20Multipartite%20States%20and%20Entanglement%20Measures%20Based%20on%20the%20Mixed%20Convex%20Roof&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Dong%20Yang&rft.date=2009-07-01&rft.volume=55&rft.issue=7&rft.spage=3375&rft.epage=3387&rft.pages=3375-3387&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2021373&rft_dat=%3Cproquest_ieee_%3E869848438%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195935283&rft_id=info:pmid/&rft_ieee_id=5075874&rfr_iscdi=true |