Loading…

Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof

New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2009-07, Vol.55 (7), p.3375-3387
Main Authors: Dong Yang, Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J., Wei Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943
cites cdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943
container_end_page 3387
container_issue 7
container_start_page 3375
container_title IEEE transactions on information theory
container_volume 55
creator Dong Yang
Horodecki, K.
Horodecki, M.
Horodecki, P.
Oppenheim, J.
Wei Song
description New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.
doi_str_mv 10.1109/TIT.2009.2021373
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_195935283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075874</ieee_id><sourcerecordid>869848438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</originalsourceid><addsrcrecordid>eNpdkEFrGzEQhUVoIW6aeyCXpVB6WldaSSvp2Bq3DcQUEucsJrujZMNasiVtSP99ZWx8yGWG4X3zmHmEXDE6Z4ya7-ub9byh1JTSMK74GZkxKVVtWik-kBmlTNdGCH1OPqX0UkYhWTMj7n43QXrGvlr6DP5pxA36XLkQq9U05mELMQ8Zq_sMGVMF_h24QkhTLMpPSMUk-Co_Y7Ua3sqwCP4V36q7ENxn8tHBmPDy2C_Iw6_levGnvv37-2bx47buRCtzLY02rdLokPWKG3SPplMdGlQgsHWCOS0ee0cZ7bHffwO9gA4YZ60pvwt-Qb4dfLcx7CZM2W6G1OE4gscwJatbo4UWXBfyyzvyJUzRl-MsM9Jw2WheIHqAuhhSiujsNg4biP8so3Yfuy2x233s9hh7Wfl69IXUwegi-G5Ip72G6aalihbu-sANiHiSJVVSK8H_A5Nhi5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195935283</pqid></control><display><type>article</type><title>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</title><source>IEEE Xplore (Online service)</source><creator>Dong Yang ; Horodecki, K. ; Horodecki, M. ; Horodecki, P. ; Oppenheim, J. ; Wei Song</creator><creatorcontrib>Dong Yang ; Horodecki, K. ; Horodecki, M. ; Horodecki, P. ; Oppenheim, J. ; Wei Song</creatorcontrib><description>New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2021373</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; C-squashed entanglement ; Cryptography ; Decomposition ; Density ; Density measurement ; Entanglement ; Entropy ; Exact sciences and technology ; Extraterrestrial measurements ; Infimum ; Information processing ; Information theory ; Information, signal and communications theory ; Mathematics ; Matrix decomposition ; Measurement ; Measurement standards ; mixed convex roof ; multipartite distillable key ; Mutual information ; Optimization ; Optimization methods ; Optimization techniques ; Physics ; Roofs ; Signal and communications theory ; squashed entanglement ; Telecommunications and information theory ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3375-3387</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</citedby><cites>FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21826070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong Yang</creatorcontrib><creatorcontrib>Horodecki, K.</creatorcontrib><creatorcontrib>Horodecki, M.</creatorcontrib><creatorcontrib>Horodecki, P.</creatorcontrib><creatorcontrib>Oppenheim, J.</creatorcontrib><creatorcontrib>Wei Song</creatorcontrib><title>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.</description><subject>Applied sciences</subject><subject>C-squashed entanglement</subject><subject>Cryptography</subject><subject>Decomposition</subject><subject>Density</subject><subject>Density measurement</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>Infimum</subject><subject>Information processing</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Mathematics</subject><subject>Matrix decomposition</subject><subject>Measurement</subject><subject>Measurement standards</subject><subject>mixed convex roof</subject><subject>multipartite distillable key</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Optimization techniques</subject><subject>Physics</subject><subject>Roofs</subject><subject>Signal and communications theory</subject><subject>squashed entanglement</subject><subject>Telecommunications and information theory</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkEFrGzEQhUVoIW6aeyCXpVB6WldaSSvp2Bq3DcQUEucsJrujZMNasiVtSP99ZWx8yGWG4X3zmHmEXDE6Z4ya7-ub9byh1JTSMK74GZkxKVVtWik-kBmlTNdGCH1OPqX0UkYhWTMj7n43QXrGvlr6DP5pxA36XLkQq9U05mELMQ8Zq_sMGVMF_h24QkhTLMpPSMUk-Co_Y7Ua3sqwCP4V36q7ENxn8tHBmPDy2C_Iw6_levGnvv37-2bx47buRCtzLY02rdLokPWKG3SPplMdGlQgsHWCOS0ee0cZ7bHffwO9gA4YZ60pvwt-Qb4dfLcx7CZM2W6G1OE4gscwJatbo4UWXBfyyzvyJUzRl-MsM9Jw2WheIHqAuhhSiujsNg4biP8so3Yfuy2x233s9hh7Wfl69IXUwegi-G5Ip72G6aalihbu-sANiHiSJVVSK8H_A5Nhi5Q</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dong Yang</creator><creator>Horodecki, K.</creator><creator>Horodecki, M.</creator><creator>Horodecki, P.</creator><creator>Oppenheim, J.</creator><creator>Wei Song</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090701</creationdate><title>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</title><author>Dong Yang ; Horodecki, K. ; Horodecki, M. ; Horodecki, P. ; Oppenheim, J. ; Wei Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>C-squashed entanglement</topic><topic>Cryptography</topic><topic>Decomposition</topic><topic>Density</topic><topic>Density measurement</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>Infimum</topic><topic>Information processing</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Mathematics</topic><topic>Matrix decomposition</topic><topic>Measurement</topic><topic>Measurement standards</topic><topic>mixed convex roof</topic><topic>multipartite distillable key</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Optimization techniques</topic><topic>Physics</topic><topic>Roofs</topic><topic>Signal and communications theory</topic><topic>squashed entanglement</topic><topic>Telecommunications and information theory</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong Yang</creatorcontrib><creatorcontrib>Horodecki, K.</creatorcontrib><creatorcontrib>Horodecki, M.</creatorcontrib><creatorcontrib>Horodecki, P.</creatorcontrib><creatorcontrib>Oppenheim, J.</creatorcontrib><creatorcontrib>Wei Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong Yang</au><au>Horodecki, K.</au><au>Horodecki, M.</au><au>Horodecki, P.</au><au>Oppenheim, J.</au><au>Wei Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>55</volume><issue>7</issue><spage>3375</spage><epage>3387</epage><pages>3375-3387</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>New measures of multipartite entanglement are constructed based on two definitions of multipartite information and different methods of optimizing over extensions of the states. One is a generalization of the squashed entanglement where one takes the mutual information of parties conditioned on the state's extension and takes the infimum over such extensions. Additivity of the multipartite squashed entanglement is proved for both versions of the multipartite information which turn out to be related. The second one is based on taking classical extensions. This scheme is generalized, which enables to construct measures of entanglement based on the mixed convex roof of a quantity, which in contrast to the standard convex roof method involves optimization over all decompositions of a density matrix rather than just the decompositions into pure states. As one of the possible applications of these results we prove that any multipartite monotone is an upper bound on the amount of multipartite distillable key. The findings are finally related to analogous results in classical key agreement.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2021373</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3375-3387
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_195935283
source IEEE Xplore (Online service)
subjects Applied sciences
C-squashed entanglement
Cryptography
Decomposition
Density
Density measurement
Entanglement
Entropy
Exact sciences and technology
Extraterrestrial measurements
Infimum
Information processing
Information theory
Information, signal and communications theory
Mathematics
Matrix decomposition
Measurement
Measurement standards
mixed convex roof
multipartite distillable key
Mutual information
Optimization
Optimization methods
Optimization techniques
Physics
Roofs
Signal and communications theory
squashed entanglement
Telecommunications and information theory
Upper bound
Upper bounds
title Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Squashed%20Entanglement%20for%20Multipartite%20States%20and%20Entanglement%20Measures%20Based%20on%20the%20Mixed%20Convex%20Roof&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Dong%20Yang&rft.date=2009-07-01&rft.volume=55&rft.issue=7&rft.spage=3375&rft.epage=3387&rft.pages=3375-3387&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2021373&rft_dat=%3Cproquest_ieee_%3E869848438%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-5989678efe1d739efb9c7ce9e7a4e6f41f84bdf010ded9448ad4aca1316900943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195935283&rft_id=info:pmid/&rft_ieee_id=5075874&rfr_iscdi=true