Loading…

Analyzing user sentiment in social media: Implications for online marketing strategy

This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. U...

Full description

Saved in:
Bibliographic Details
Published in:Psychology & marketing 2017-12, Vol.34 (12), p.1094-1100
Main Authors: Micu, Adrian, Micu, Angela Eliza, Geru, Marius, Lixandroiu, Radu Constantin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23
cites cdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23
container_end_page 1100
container_issue 12
container_start_page 1094
container_title Psychology & marketing
container_volume 34
creator Micu, Adrian
Micu, Angela Eliza
Geru, Marius
Lixandroiu, Radu Constantin
description This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.
doi_str_mv 10.1002/mar.21049
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1960909545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1960909545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKcH_4OAJw_dXpo2TbyN4XQwEWSeQ5qmI7NtZtIh9a83s159h_d48Hk_vl-EbgnMCEA6b5WfpQQycYYmJE8hYYWg52gCRZYmDDJ2ia5C2ANEWuQTtF10qhm-bbfDx2A8DqbrbRsTth0OTlvV4NZUVj3gdXtorFa9dV3AtfPYdY3tDI4nP0x_2hB6r3qzG67RRa2aYG7-6hS9rx63y-dk8_q0Xi42iaapEElJRFkWuciqlGtghJOCc-BQ8RigSUVLqiPIgeqi0pppTqlgUOdMZMSkdIruxr0H7z6PJvRy744-CgqSRE5EhVkeqfuR0t6F4E0tD97GpwdJQJ5Mk7GRv6ZFdj6yX7Yxw_-gfFm8jRM_B0xtGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960909545</pqid></control><display><type>article</type><title>Analyzing user sentiment in social media: Implications for online marketing strategy</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Micu, Adrian ; Micu, Angela Eliza ; Geru, Marius ; Lixandroiu, Radu Constantin</creator><creatorcontrib>Micu, Adrian ; Micu, Angela Eliza ; Geru, Marius ; Lixandroiu, Radu Constantin</creatorcontrib><description>This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.</description><identifier>ISSN: 0742-6046</identifier><identifier>EISSN: 1520-6793</identifier><identifier>DOI: 10.1002/mar.21049</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals Inc</publisher><subject>Customer satisfaction ; Customers ; Digital marketing ; online reputation management ; Restaurants ; Sentiment analysis ; social media marketing ; Social networks ; targeting</subject><ispartof>Psychology &amp; marketing, 2017-12, Vol.34 (12), p.1094-1100</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Copyright © 2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</citedby><cites>FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Micu, Angela Eliza</creatorcontrib><creatorcontrib>Geru, Marius</creatorcontrib><creatorcontrib>Lixandroiu, Radu Constantin</creatorcontrib><title>Analyzing user sentiment in social media: Implications for online marketing strategy</title><title>Psychology &amp; marketing</title><description>This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.</description><subject>Customer satisfaction</subject><subject>Customers</subject><subject>Digital marketing</subject><subject>online reputation management</subject><subject>Restaurants</subject><subject>Sentiment analysis</subject><subject>social media marketing</subject><subject>Social networks</subject><subject>targeting</subject><issn>0742-6046</issn><issn>1520-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKcH_4OAJw_dXpo2TbyN4XQwEWSeQ5qmI7NtZtIh9a83s159h_d48Hk_vl-EbgnMCEA6b5WfpQQycYYmJE8hYYWg52gCRZYmDDJ2ia5C2ANEWuQTtF10qhm-bbfDx2A8DqbrbRsTth0OTlvV4NZUVj3gdXtorFa9dV3AtfPYdY3tDI4nP0x_2hB6r3qzG67RRa2aYG7-6hS9rx63y-dk8_q0Xi42iaapEElJRFkWuciqlGtghJOCc-BQ8RigSUVLqiPIgeqi0pppTqlgUOdMZMSkdIruxr0H7z6PJvRy744-CgqSRE5EhVkeqfuR0t6F4E0tD97GpwdJQJ5Mk7GRv6ZFdj6yX7Yxw_-gfFm8jRM_B0xtGw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Micu, Adrian</creator><creator>Micu, Angela Eliza</creator><creator>Geru, Marius</creator><creator>Lixandroiu, Radu Constantin</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>Analyzing user sentiment in social media: Implications for online marketing strategy</title><author>Micu, Adrian ; Micu, Angela Eliza ; Geru, Marius ; Lixandroiu, Radu Constantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Customer satisfaction</topic><topic>Customers</topic><topic>Digital marketing</topic><topic>online reputation management</topic><topic>Restaurants</topic><topic>Sentiment analysis</topic><topic>social media marketing</topic><topic>Social networks</topic><topic>targeting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Micu, Angela Eliza</creatorcontrib><creatorcontrib>Geru, Marius</creatorcontrib><creatorcontrib>Lixandroiu, Radu Constantin</creatorcontrib><collection>CrossRef</collection><jtitle>Psychology &amp; marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micu, Adrian</au><au>Micu, Angela Eliza</au><au>Geru, Marius</au><au>Lixandroiu, Radu Constantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing user sentiment in social media: Implications for online marketing strategy</atitle><jtitle>Psychology &amp; marketing</jtitle><date>2017-12</date><risdate>2017</risdate><volume>34</volume><issue>12</issue><spage>1094</spage><epage>1100</epage><pages>1094-1100</pages><issn>0742-6046</issn><eissn>1520-6793</eissn><abstract>This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/mar.21049</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0742-6046
ispartof Psychology & marketing, 2017-12, Vol.34 (12), p.1094-1100
issn 0742-6046
1520-6793
language eng
recordid cdi_proquest_journals_1960909545
source Wiley-Blackwell Read & Publish Collection; BSC - Ebsco (Business Source Ultimate)
subjects Customer satisfaction
Customers
Digital marketing
online reputation management
Restaurants
Sentiment analysis
social media marketing
Social networks
targeting
title Analyzing user sentiment in social media: Implications for online marketing strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20user%20sentiment%20in%20social%20media:%20Implications%20for%20online%20marketing%20strategy&rft.jtitle=Psychology%20&%20marketing&rft.au=Micu,%20Adrian&rft.date=2017-12&rft.volume=34&rft.issue=12&rft.spage=1094&rft.epage=1100&rft.pages=1094-1100&rft.issn=0742-6046&rft.eissn=1520-6793&rft_id=info:doi/10.1002/mar.21049&rft_dat=%3Cproquest_cross%3E1960909545%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1960909545&rft_id=info:pmid/&rfr_iscdi=true