Loading…
Analyzing user sentiment in social media: Implications for online marketing strategy
This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. U...
Saved in:
Published in: | Psychology & marketing 2017-12, Vol.34 (12), p.1094-1100 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23 |
container_end_page | 1100 |
container_issue | 12 |
container_start_page | 1094 |
container_title | Psychology & marketing |
container_volume | 34 |
creator | Micu, Adrian Micu, Angela Eliza Geru, Marius Lixandroiu, Radu Constantin |
description | This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved. |
doi_str_mv | 10.1002/mar.21049 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1960909545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1960909545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKcH_4OAJw_dXpo2TbyN4XQwEWSeQ5qmI7NtZtIh9a83s159h_d48Hk_vl-EbgnMCEA6b5WfpQQycYYmJE8hYYWg52gCRZYmDDJ2ia5C2ANEWuQTtF10qhm-bbfDx2A8DqbrbRsTth0OTlvV4NZUVj3gdXtorFa9dV3AtfPYdY3tDI4nP0x_2hB6r3qzG67RRa2aYG7-6hS9rx63y-dk8_q0Xi42iaapEElJRFkWuciqlGtghJOCc-BQ8RigSUVLqiPIgeqi0pppTqlgUOdMZMSkdIruxr0H7z6PJvRy744-CgqSRE5EhVkeqfuR0t6F4E0tD97GpwdJQJ5Mk7GRv6ZFdj6yX7Yxw_-gfFm8jRM_B0xtGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960909545</pqid></control><display><type>article</type><title>Analyzing user sentiment in social media: Implications for online marketing strategy</title><source>Wiley-Blackwell Read & Publish Collection</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Micu, Adrian ; Micu, Angela Eliza ; Geru, Marius ; Lixandroiu, Radu Constantin</creator><creatorcontrib>Micu, Adrian ; Micu, Angela Eliza ; Geru, Marius ; Lixandroiu, Radu Constantin</creatorcontrib><description>This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.</description><identifier>ISSN: 0742-6046</identifier><identifier>EISSN: 1520-6793</identifier><identifier>DOI: 10.1002/mar.21049</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals Inc</publisher><subject>Customer satisfaction ; Customers ; Digital marketing ; online reputation management ; Restaurants ; Sentiment analysis ; social media marketing ; Social networks ; targeting</subject><ispartof>Psychology & marketing, 2017-12, Vol.34 (12), p.1094-1100</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>Copyright © 2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</citedby><cites>FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Micu, Angela Eliza</creatorcontrib><creatorcontrib>Geru, Marius</creatorcontrib><creatorcontrib>Lixandroiu, Radu Constantin</creatorcontrib><title>Analyzing user sentiment in social media: Implications for online marketing strategy</title><title>Psychology & marketing</title><description>This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.</description><subject>Customer satisfaction</subject><subject>Customers</subject><subject>Digital marketing</subject><subject>online reputation management</subject><subject>Restaurants</subject><subject>Sentiment analysis</subject><subject>social media marketing</subject><subject>Social networks</subject><subject>targeting</subject><issn>0742-6046</issn><issn>1520-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKcH_4OAJw_dXpo2TbyN4XQwEWSeQ5qmI7NtZtIh9a83s159h_d48Hk_vl-EbgnMCEA6b5WfpQQycYYmJE8hYYWg52gCRZYmDDJ2ia5C2ANEWuQTtF10qhm-bbfDx2A8DqbrbRsTth0OTlvV4NZUVj3gdXtorFa9dV3AtfPYdY3tDI4nP0x_2hB6r3qzG67RRa2aYG7-6hS9rx63y-dk8_q0Xi42iaapEElJRFkWuciqlGtghJOCc-BQ8RigSUVLqiPIgeqi0pppTqlgUOdMZMSkdIruxr0H7z6PJvRy744-CgqSRE5EhVkeqfuR0t6F4E0tD97GpwdJQJ5Mk7GRv6ZFdj6yX7Yxw_-gfFm8jRM_B0xtGw</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Micu, Adrian</creator><creator>Micu, Angela Eliza</creator><creator>Geru, Marius</creator><creator>Lixandroiu, Radu Constantin</creator><general>Wiley Periodicals Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201712</creationdate><title>Analyzing user sentiment in social media: Implications for online marketing strategy</title><author>Micu, Adrian ; Micu, Angela Eliza ; Geru, Marius ; Lixandroiu, Radu Constantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Customer satisfaction</topic><topic>Customers</topic><topic>Digital marketing</topic><topic>online reputation management</topic><topic>Restaurants</topic><topic>Sentiment analysis</topic><topic>social media marketing</topic><topic>Social networks</topic><topic>targeting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micu, Adrian</creatorcontrib><creatorcontrib>Micu, Angela Eliza</creatorcontrib><creatorcontrib>Geru, Marius</creatorcontrib><creatorcontrib>Lixandroiu, Radu Constantin</creatorcontrib><collection>CrossRef</collection><jtitle>Psychology & marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micu, Adrian</au><au>Micu, Angela Eliza</au><au>Geru, Marius</au><au>Lixandroiu, Radu Constantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing user sentiment in social media: Implications for online marketing strategy</atitle><jtitle>Psychology & marketing</jtitle><date>2017-12</date><risdate>2017</risdate><volume>34</volume><issue>12</issue><spage>1094</spage><epage>1100</epage><pages>1094-1100</pages><issn>0742-6046</issn><eissn>1520-6793</eissn><abstract>This article examines restaurant customers’ online activity following visits to restaurants. Differences in customers’ opinions based on gender and location are discussed. Sentiment analysis was used to analyze customers’ social media behavior in terms of liking, rating, and reviewing restaurants. User‐generated reviews and comments about experiences influence potential customers’ decisions. The results of this study show that gender and location of customers influence restaurant ratings. This article shows that sentiment analysis (using Natural Language Toolkit and TextBlob) can help marketers by providing a useful tool for big data analysis. Sentiment analysis can be used to interpret customer behavior and highlight how presales, sales, and after‐sales strategies can be improved.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals Inc</pub><doi>10.1002/mar.21049</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0742-6046 |
ispartof | Psychology & marketing, 2017-12, Vol.34 (12), p.1094-1100 |
issn | 0742-6046 1520-6793 |
language | eng |
recordid | cdi_proquest_journals_1960909545 |
source | Wiley-Blackwell Read & Publish Collection; BSC - Ebsco (Business Source Ultimate) |
subjects | Customer satisfaction Customers Digital marketing online reputation management Restaurants Sentiment analysis social media marketing Social networks targeting |
title | Analyzing user sentiment in social media: Implications for online marketing strategy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20user%20sentiment%20in%20social%20media:%20Implications%20for%20online%20marketing%20strategy&rft.jtitle=Psychology%20&%20marketing&rft.au=Micu,%20Adrian&rft.date=2017-12&rft.volume=34&rft.issue=12&rft.spage=1094&rft.epage=1100&rft.pages=1094-1100&rft.issn=0742-6046&rft.eissn=1520-6793&rft_id=info:doi/10.1002/mar.21049&rft_dat=%3Cproquest_cross%3E1960909545%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3299-b19bb7594d28c06181788080d88880c1d3b3c299803c7dcc6c833960f56941e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1960909545&rft_id=info:pmid/&rfr_iscdi=true |