Loading…

Automated nebulizer sprayed tin doped titanium dioxide (SnxTi1-xO2) anatase nanofilms properties, gas sensing performance

SnxTi1-xO2 nanofilms deposited at 500 °C heated glass substrate by automated nebulizer spray pyrolysis method. Stabilized anatase phase of polycrystalline nature with decremented intensity were observed in XRD study, correspondingly precursor materials (Ti, Sn, O) were confirmed by XPS, EDS. The sur...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2017-09, Vol.199, p.113-121
Main Authors: Gopala Krishnan, V., Elango, P., Purushothaman, A., Chandra Bose, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803
cites cdi_FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803
container_end_page 121
container_issue
container_start_page 113
container_title Materials chemistry and physics
container_volume 199
creator Gopala Krishnan, V.
Elango, P.
Purushothaman, A.
Chandra Bose, A.
description SnxTi1-xO2 nanofilms deposited at 500 °C heated glass substrate by automated nebulizer spray pyrolysis method. Stabilized anatase phase of polycrystalline nature with decremented intensity were observed in XRD study, correspondingly precursor materials (Ti, Sn, O) were confirmed by XPS, EDS. The surface profilometer shows a coated films thickness and the surface morphology illustrates a various structure such as granular spherical shape, micro grain petal-like structure, a granular structure with wider petals (stripe likes) and void, crack less agglomerated grain particles were acquired with respect to Sn concentration. An optical study shows the maximum oscillating nature of transmittance is 66.8% (at = 524.4 nm) for Sn = 10.00% and the resultant transmittance values were enhanced and their sharp absorption edge shows blue shift by increase Sn concentration. Similarly, band gap values (Eg = 3.20 eV–3.56 eV) were increased due to Moss-Burstein shift. Notably, gas sensing performance of SnxTi1-xO2 shows the highest sensitivity behaviour to Sn = 5.00% (Y0.05Ti0.95O2) for reducing gas of C2H6O at 150 °C with 300 ppm gas concentration. All coated films exhibit the better sensitivity for ethanol (C2H6O) gas against other gases (CH4O, C3H8O, NH3, and C3H6O). [Display omitted] •Sn-TiO2 exhibits anatase tetragonal phase of polycrystalline nature.•Surface thickness, morphology changed with respect to Sn concentration.•Sharp absorption edge were decreased and the band gap increased due to Sn.•Sn = 5.00% illustrate better sensitivity to C2H6O among the others concentration and reducing gases.
doi_str_mv 10.1016/j.matchemphys.2017.06.052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1960984554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058417304959</els_id><sourcerecordid>1960984554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803</originalsourceid><addsrcrecordid>eNqNUMFO3DAUtCqQukD_wVUvrUTCc-I48RGtgFZC2gPbs-XYL-DVxkltp9rl6zHdHnrs6T2NZua9GUI-MygZMHGzK0edzAuO88sxlhWwtgRRQlN9ICvWtbKoa1adkRVUDS-g6fhHchHjDjKRsXpFjrdLmrIFWuqxX_buFQONc9DHjCTnqZ3mP1vS3i0jtW46OIv065M_bB0rDpvqG9VeJx2Reu2nwe3HSOeQZSE5jNf0WUca0Ufnn2kGhymM2hu8IueD3kf89Hdekp_3d9v19-Jx8_BjfftYmJrLVFhsqsZIYcG2Ukrdi1YYUUsjodVWtH2Lfd9x2zOhAdsBrObQ9UxzA5J3UF-SLyff_NOvBWNSu2kJPp9UTAqQHW8anlnyxDJhijHgoObgRh2OioF6b1rt1D9Nq_emFQiVm87a9UmLOcZvh0FF4zBHtC6gScpO7j9c3gDvt4_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1960984554</pqid></control><display><type>article</type><title>Automated nebulizer sprayed tin doped titanium dioxide (SnxTi1-xO2) anatase nanofilms properties, gas sensing performance</title><source>Elsevier</source><creator>Gopala Krishnan, V. ; Elango, P. ; Purushothaman, A. ; Chandra Bose, A.</creator><creatorcontrib>Gopala Krishnan, V. ; Elango, P. ; Purushothaman, A. ; Chandra Bose, A.</creatorcontrib><description>SnxTi1-xO2 nanofilms deposited at 500 °C heated glass substrate by automated nebulizer spray pyrolysis method. Stabilized anatase phase of polycrystalline nature with decremented intensity were observed in XRD study, correspondingly precursor materials (Ti, Sn, O) were confirmed by XPS, EDS. The surface profilometer shows a coated films thickness and the surface morphology illustrates a various structure such as granular spherical shape, micro grain petal-like structure, a granular structure with wider petals (stripe likes) and void, crack less agglomerated grain particles were acquired with respect to Sn concentration. An optical study shows the maximum oscillating nature of transmittance is 66.8% (at = 524.4 nm) for Sn = 10.00% and the resultant transmittance values were enhanced and their sharp absorption edge shows blue shift by increase Sn concentration. Similarly, band gap values (Eg = 3.20 eV–3.56 eV) were increased due to Moss-Burstein shift. Notably, gas sensing performance of SnxTi1-xO2 shows the highest sensitivity behaviour to Sn = 5.00% (Y0.05Ti0.95O2) for reducing gas of C2H6O at 150 °C with 300 ppm gas concentration. All coated films exhibit the better sensitivity for ethanol (C2H6O) gas against other gases (CH4O, C3H8O, NH3, and C3H6O). [Display omitted] •Sn-TiO2 exhibits anatase tetragonal phase of polycrystalline nature.•Surface thickness, morphology changed with respect to Sn concentration.•Sharp absorption edge were decreased and the band gap increased due to Sn.•Sn = 5.00% illustrate better sensitivity to C2H6O among the others concentration and reducing gases.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2017.06.052</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anatase ; Automated nebulizer spray pyrolysis ; Band gap ; Ethanol ; Gas sensing performance ; Gas sensors ; Glass substrates ; Optical properties ; Polycrystals ; Sensitivity ; Spray pyrolysis ; Structural properties ; Thickness ; Tin ; Titanium dioxide ; Titanium nitride ; Titanium oxides ; Transmittance ; X ray photoelectron spectroscopy</subject><ispartof>Materials chemistry and physics, 2017-09, Vol.199, p.113-121</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803</citedby><cites>FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gopala Krishnan, V.</creatorcontrib><creatorcontrib>Elango, P.</creatorcontrib><creatorcontrib>Purushothaman, A.</creatorcontrib><creatorcontrib>Chandra Bose, A.</creatorcontrib><title>Automated nebulizer sprayed tin doped titanium dioxide (SnxTi1-xO2) anatase nanofilms properties, gas sensing performance</title><title>Materials chemistry and physics</title><description>SnxTi1-xO2 nanofilms deposited at 500 °C heated glass substrate by automated nebulizer spray pyrolysis method. Stabilized anatase phase of polycrystalline nature with decremented intensity were observed in XRD study, correspondingly precursor materials (Ti, Sn, O) were confirmed by XPS, EDS. The surface profilometer shows a coated films thickness and the surface morphology illustrates a various structure such as granular spherical shape, micro grain petal-like structure, a granular structure with wider petals (stripe likes) and void, crack less agglomerated grain particles were acquired with respect to Sn concentration. An optical study shows the maximum oscillating nature of transmittance is 66.8% (at = 524.4 nm) for Sn = 10.00% and the resultant transmittance values were enhanced and their sharp absorption edge shows blue shift by increase Sn concentration. Similarly, band gap values (Eg = 3.20 eV–3.56 eV) were increased due to Moss-Burstein shift. Notably, gas sensing performance of SnxTi1-xO2 shows the highest sensitivity behaviour to Sn = 5.00% (Y0.05Ti0.95O2) for reducing gas of C2H6O at 150 °C with 300 ppm gas concentration. All coated films exhibit the better sensitivity for ethanol (C2H6O) gas against other gases (CH4O, C3H8O, NH3, and C3H6O). [Display omitted] •Sn-TiO2 exhibits anatase tetragonal phase of polycrystalline nature.•Surface thickness, morphology changed with respect to Sn concentration.•Sharp absorption edge were decreased and the band gap increased due to Sn.•Sn = 5.00% illustrate better sensitivity to C2H6O among the others concentration and reducing gases.</description><subject>Anatase</subject><subject>Automated nebulizer spray pyrolysis</subject><subject>Band gap</subject><subject>Ethanol</subject><subject>Gas sensing performance</subject><subject>Gas sensors</subject><subject>Glass substrates</subject><subject>Optical properties</subject><subject>Polycrystals</subject><subject>Sensitivity</subject><subject>Spray pyrolysis</subject><subject>Structural properties</subject><subject>Thickness</subject><subject>Tin</subject><subject>Titanium dioxide</subject><subject>Titanium nitride</subject><subject>Titanium oxides</subject><subject>Transmittance</subject><subject>X ray photoelectron spectroscopy</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUMFO3DAUtCqQukD_wVUvrUTCc-I48RGtgFZC2gPbs-XYL-DVxkltp9rl6zHdHnrs6T2NZua9GUI-MygZMHGzK0edzAuO88sxlhWwtgRRQlN9ICvWtbKoa1adkRVUDS-g6fhHchHjDjKRsXpFjrdLmrIFWuqxX_buFQONc9DHjCTnqZ3mP1vS3i0jtW46OIv065M_bB0rDpvqG9VeJx2Reu2nwe3HSOeQZSE5jNf0WUca0Ufnn2kGhymM2hu8IueD3kf89Hdekp_3d9v19-Jx8_BjfftYmJrLVFhsqsZIYcG2Ukrdi1YYUUsjodVWtH2Lfd9x2zOhAdsBrObQ9UxzA5J3UF-SLyff_NOvBWNSu2kJPp9UTAqQHW8anlnyxDJhijHgoObgRh2OioF6b1rt1D9Nq_emFQiVm87a9UmLOcZvh0FF4zBHtC6gScpO7j9c3gDvt4_L</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Gopala Krishnan, V.</creator><creator>Elango, P.</creator><creator>Purushothaman, A.</creator><creator>Chandra Bose, A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170915</creationdate><title>Automated nebulizer sprayed tin doped titanium dioxide (SnxTi1-xO2) anatase nanofilms properties, gas sensing performance</title><author>Gopala Krishnan, V. ; Elango, P. ; Purushothaman, A. ; Chandra Bose, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anatase</topic><topic>Automated nebulizer spray pyrolysis</topic><topic>Band gap</topic><topic>Ethanol</topic><topic>Gas sensing performance</topic><topic>Gas sensors</topic><topic>Glass substrates</topic><topic>Optical properties</topic><topic>Polycrystals</topic><topic>Sensitivity</topic><topic>Spray pyrolysis</topic><topic>Structural properties</topic><topic>Thickness</topic><topic>Tin</topic><topic>Titanium dioxide</topic><topic>Titanium nitride</topic><topic>Titanium oxides</topic><topic>Transmittance</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopala Krishnan, V.</creatorcontrib><creatorcontrib>Elango, P.</creatorcontrib><creatorcontrib>Purushothaman, A.</creatorcontrib><creatorcontrib>Chandra Bose, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopala Krishnan, V.</au><au>Elango, P.</au><au>Purushothaman, A.</au><au>Chandra Bose, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated nebulizer sprayed tin doped titanium dioxide (SnxTi1-xO2) anatase nanofilms properties, gas sensing performance</atitle><jtitle>Materials chemistry and physics</jtitle><date>2017-09-15</date><risdate>2017</risdate><volume>199</volume><spage>113</spage><epage>121</epage><pages>113-121</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>SnxTi1-xO2 nanofilms deposited at 500 °C heated glass substrate by automated nebulizer spray pyrolysis method. Stabilized anatase phase of polycrystalline nature with decremented intensity were observed in XRD study, correspondingly precursor materials (Ti, Sn, O) were confirmed by XPS, EDS. The surface profilometer shows a coated films thickness and the surface morphology illustrates a various structure such as granular spherical shape, micro grain petal-like structure, a granular structure with wider petals (stripe likes) and void, crack less agglomerated grain particles were acquired with respect to Sn concentration. An optical study shows the maximum oscillating nature of transmittance is 66.8% (at = 524.4 nm) for Sn = 10.00% and the resultant transmittance values were enhanced and their sharp absorption edge shows blue shift by increase Sn concentration. Similarly, band gap values (Eg = 3.20 eV–3.56 eV) were increased due to Moss-Burstein shift. Notably, gas sensing performance of SnxTi1-xO2 shows the highest sensitivity behaviour to Sn = 5.00% (Y0.05Ti0.95O2) for reducing gas of C2H6O at 150 °C with 300 ppm gas concentration. All coated films exhibit the better sensitivity for ethanol (C2H6O) gas against other gases (CH4O, C3H8O, NH3, and C3H6O). [Display omitted] •Sn-TiO2 exhibits anatase tetragonal phase of polycrystalline nature.•Surface thickness, morphology changed with respect to Sn concentration.•Sharp absorption edge were decreased and the band gap increased due to Sn.•Sn = 5.00% illustrate better sensitivity to C2H6O among the others concentration and reducing gases.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2017.06.052</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2017-09, Vol.199, p.113-121
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_1960984554
source Elsevier
subjects Anatase
Automated nebulizer spray pyrolysis
Band gap
Ethanol
Gas sensing performance
Gas sensors
Glass substrates
Optical properties
Polycrystals
Sensitivity
Spray pyrolysis
Structural properties
Thickness
Tin
Titanium dioxide
Titanium nitride
Titanium oxides
Transmittance
X ray photoelectron spectroscopy
title Automated nebulizer sprayed tin doped titanium dioxide (SnxTi1-xO2) anatase nanofilms properties, gas sensing performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T17%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20nebulizer%20sprayed%20tin%20doped%20titanium%20dioxide%20(SnxTi1-xO2)%20anatase%20nanofilms%20properties,%20gas%20sensing%20performance&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Gopala%20Krishnan,%20V.&rft.date=2017-09-15&rft.volume=199&rft.spage=113&rft.epage=121&rft.pages=113-121&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2017.06.052&rft_dat=%3Cproquest_cross%3E1960984554%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-de525c96d0d7999ab676c639c907ad67b7ebb84db16a0e7f0da408b1a4c094803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1960984554&rft_id=info:pmid/&rfr_iscdi=true