Loading…
Bayesian Fourier clustering of gene expression data
Clustering gene expression data are an important step in providing information to biologists. A Bayesian clustering procedure using Fourier series with a Dirichlet process prior for clusters was developed. As an optimal computational tool for this Bayesian approach, Gibbs sampling of a normal mixtur...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2017-09, Vol.46 (8), p.6475-6494 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clustering gene expression data are an important step in providing information to biologists. A Bayesian clustering procedure using Fourier series with a Dirichlet process prior for clusters was developed. As an optimal computational tool for this Bayesian approach, Gibbs sampling of a normal mixture with a Dirichlet process was implemented to calculate the posterior probabilities when the number of clusters was unknown. Monte Carlo study results showed that the model was useful for suitable clustering. The proposed method was applied to the budding yeast Saccaromyces cerevisiae and provided biologically interpretable results. |
---|---|
ISSN: | 0361-0918 1532-4141 |
DOI: | 10.1080/03610918.2016.1206929 |