Loading…

Leibniz Algebras Admitting a Multiplicative Basis

In the literature, many of the descriptions of different classes of Leibniz algebras ( L , [ · , · ] ) have been made by giving the multiplication table on the elements of a basis B = { v k } k ∈ K of L , in such a way that for any i , j ∈ K we have that [ v i , v j ] = λ i , j [ v j , v i ] ∈ F v k...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Malaysian Mathematical Sciences Society 2017-04, Vol.40 (2), p.679-695
Main Author: Calderón Martín, Antonio J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13
cites cdi_FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13
container_end_page 695
container_issue 2
container_start_page 679
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 40
creator Calderón Martín, Antonio J.
description In the literature, many of the descriptions of different classes of Leibniz algebras ( L , [ · , · ] ) have been made by giving the multiplication table on the elements of a basis B = { v k } k ∈ K of L , in such a way that for any i , j ∈ K we have that [ v i , v j ] = λ i , j [ v j , v i ] ∈ F v k for some k ∈ K , where F denotes the base field and λ i , j ∈ F . In order to give an unifying viewpoint of all these classes of algebras, we introduce the more general category of Leibniz algebras admitting a multiplicative basis and study its structure. We show that if a Leibniz algebra L admits a multiplicative basis, then it is the direct sum L = ⨁ α I α with any I α a well-described ideal of L admitting a multiplicative basis inherited from B . Also the B -simplicity of L is characterized in terms of the multiplicative basis.
doi_str_mv 10.1007/s40840-017-0446-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1961528275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1961528275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EElXpD2CLxGx4zx_PyVgqoEhFLDBbbuJUrtK02CkS_HpchYGFt9zl3Pukw9g1wi0CmLukoFTAAQ0HpYjLMzYRWAJXAuicTQAFcTKgL9kspS3k0yRI4IThyod1H76Lebfx6-hSMW92YRhCvylc8XLshnDoQu2G8OmLe5dCumIXreuSn_3mlL0_Prwtlnz1-vS8mK94LZEGLp1BKFvhKmGckQa8VlQ1pMhpbchXrfLatbJyshEteQRCWteZqJvGNyin7GbcPcT9x9GnwW73x9jnlxYrQi1KYXSmcKTquE8p-tYeYti5-GUR7EmOHeXYLMee5FiZO2LspMz2Gx__LP9b-gG8b2UZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1961528275</pqid></control><display><type>article</type><title>Leibniz Algebras Admitting a Multiplicative Basis</title><source>Springer Link</source><creator>Calderón Martín, Antonio J.</creator><creatorcontrib>Calderón Martín, Antonio J.</creatorcontrib><description>In the literature, many of the descriptions of different classes of Leibniz algebras ( L , [ · , · ] ) have been made by giving the multiplication table on the elements of a basis B = { v k } k ∈ K of L , in such a way that for any i , j ∈ K we have that [ v i , v j ] = λ i , j [ v j , v i ] ∈ F v k for some k ∈ K , where F denotes the base field and λ i , j ∈ F . In order to give an unifying viewpoint of all these classes of algebras, we introduce the more general category of Leibniz algebras admitting a multiplicative basis and study its structure. We show that if a Leibniz algebra L admits a multiplicative basis, then it is the direct sum L = ⨁ α I α with any I α a well-described ideal of L admitting a multiplicative basis inherited from B . Also the B -simplicity of L is characterized in terms of the multiplicative basis.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-017-0446-3</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Algebra ; Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2017-04, Vol.40 (2), p.679-695</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13</citedby><cites>FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Calderón Martín, Antonio J.</creatorcontrib><title>Leibniz Algebras Admitting a Multiplicative Basis</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>In the literature, many of the descriptions of different classes of Leibniz algebras ( L , [ · , · ] ) have been made by giving the multiplication table on the elements of a basis B = { v k } k ∈ K of L , in such a way that for any i , j ∈ K we have that [ v i , v j ] = λ i , j [ v j , v i ] ∈ F v k for some k ∈ K , where F denotes the base field and λ i , j ∈ F . In order to give an unifying viewpoint of all these classes of algebras, we introduce the more general category of Leibniz algebras admitting a multiplicative basis and study its structure. We show that if a Leibniz algebra L admits a multiplicative basis, then it is the direct sum L = ⨁ α I α with any I α a well-described ideal of L admitting a multiplicative basis inherited from B . Also the B -simplicity of L is characterized in terms of the multiplicative basis.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EElXpD2CLxGx4zx_PyVgqoEhFLDBbbuJUrtK02CkS_HpchYGFt9zl3Pukw9g1wi0CmLukoFTAAQ0HpYjLMzYRWAJXAuicTQAFcTKgL9kspS3k0yRI4IThyod1H76Lebfx6-hSMW92YRhCvylc8XLshnDoQu2G8OmLe5dCumIXreuSn_3mlL0_Prwtlnz1-vS8mK94LZEGLp1BKFvhKmGckQa8VlQ1pMhpbchXrfLatbJyshEteQRCWteZqJvGNyin7GbcPcT9x9GnwW73x9jnlxYrQi1KYXSmcKTquE8p-tYeYti5-GUR7EmOHeXYLMee5FiZO2LspMz2Gx__LP9b-gG8b2UZ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Calderón Martín, Antonio J.</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170401</creationdate><title>Leibniz Algebras Admitting a Multiplicative Basis</title><author>Calderón Martín, Antonio J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calderón Martín, Antonio J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calderón Martín, Antonio J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leibniz Algebras Admitting a Multiplicative Basis</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>40</volume><issue>2</issue><spage>679</spage><epage>695</epage><pages>679-695</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>In the literature, many of the descriptions of different classes of Leibniz algebras ( L , [ · , · ] ) have been made by giving the multiplication table on the elements of a basis B = { v k } k ∈ K of L , in such a way that for any i , j ∈ K we have that [ v i , v j ] = λ i , j [ v j , v i ] ∈ F v k for some k ∈ K , where F denotes the base field and λ i , j ∈ F . In order to give an unifying viewpoint of all these classes of algebras, we introduce the more general category of Leibniz algebras admitting a multiplicative basis and study its structure. We show that if a Leibniz algebra L admits a multiplicative basis, then it is the direct sum L = ⨁ α I α with any I α a well-described ideal of L admitting a multiplicative basis inherited from B . Also the B -simplicity of L is characterized in terms of the multiplicative basis.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-017-0446-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2017-04, Vol.40 (2), p.679-695
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_1961528275
source Springer Link
subjects Algebra
Applications of Mathematics
Mathematics
Mathematics and Statistics
title Leibniz Algebras Admitting a Multiplicative Basis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leibniz%20Algebras%20Admitting%20a%20Multiplicative%20Basis&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Calder%C3%B3n%20Mart%C3%ADn,%20Antonio%20J.&rft.date=2017-04-01&rft.volume=40&rft.issue=2&rft.spage=679&rft.epage=695&rft.pages=679-695&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-017-0446-3&rft_dat=%3Cproquest_cross%3E1961528275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3a7108f2a927a7370e5469d646a5576e9f4e5af39a3d2f6e10616bc9d6cdded13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1961528275&rft_id=info:pmid/&rfr_iscdi=true