Loading…
Granular Fuzzy Possibilistic C-Means Clustering approach to DNA microarray problem
Deoxyribonucleic acid (DNA) microarray is an important technology, which supports a simultaneous measurement of thousands of genes for biological analysis. With the rapid development of the gene expression data characterized by uncertainty and being of high dimensionality, there is a genuine need fo...
Saved in:
Published in: | Knowledge-based systems 2017-10, Vol.133, p.53-65 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deoxyribonucleic acid (DNA) microarray is an important technology, which supports a simultaneous measurement of thousands of genes for biological analysis. With the rapid development of the gene expression data characterized by uncertainty and being of high dimensionality, there is a genuine need for advanced processing techniques. With this regard, Fuzzy Possibilistic C-Means Clustering (FPCM) and Granular Computing (GrC) are introduced with the aim to solve problems of feature selection and outlier detection. In this study, by taking advantage of the FPCM and GrC, an Advanced Fuzzy Possibilistic C-Means Clustering based on Granular Computing (GrFPCM) is proposed to select features as a preprocessing phase for clustering problems while the developed granular space is used to cope with uncertainty. Experiments were completed for various gene expression datasets and a comparative analysis is reported. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2017.06.019 |