Loading…

A study on fracture behavior at the composite plates of CFRP and aluminum bonded with sandwich type

The weight of machinery such as the aircraft, automobiles etc., has a great impact on the consumption of fuel and electricity. Thus, we have been researching on the enhanced design to make the weight of aircraft and automobile lighter. It is quite important and urgent to enhance the overall performa...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing 2017-11, Vol.18 (11), p.1547-1552
Main Authors: Gao, Teng, Park, Jae Woong, Cho, Jae Ung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The weight of machinery such as the aircraft, automobiles etc., has a great impact on the consumption of fuel and electricity. Thus, we have been researching on the enhanced design to make the weight of aircraft and automobile lighter. It is quite important and urgent to enhance the overall performance for the purpose of significantly reducing the weight of the machine. The aim of this study is to analyze the mechanical behavior of the aluminum plate sandwich and the carbon fiber reinforced plastic sandwich and aluminum foam specimen through the compression simulation analysis. In experiment, the maximum load of the carbon fiber reinforced plastic sandwich was 49.15 kN, the maximum load of the aluminum sandwich was approximately 51.2 kN, the maximum load of the aluminum foam specimen was 3.27 kN while the load cell moved 12 mm as the rigid displacement. It was affirmed that the results of simulation and experiment were very similar. In simulation, the maximum equivalent stress of carbon fiber reinforced plastic sandwich was larger than the equivalent stress of aluminum plate sandwich. The analysis and the experimental results obtained from this study could be applied in many areas employing CFRP and aluminum plate.
ISSN:2234-7593
2005-4602
DOI:10.1007/s12541-017-0183-4