Loading…
Laser polishing and 2PP structuring of inside microfluidic channels in fused silica
This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) ca...
Saved in:
Published in: | Microfluidics and nanofluidics 2017-11, Vol.21 (11), p.1-9, Article 165 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393 |
container_end_page | 9 |
container_issue | 11 |
container_start_page | 1 |
container_title | Microfluidics and nanofluidics |
container_volume | 21 |
creator | Weingarten, Christian Steenhusen, Sönke Hermans, Martin Willenborg, Edgar Schleifenbaum, Johannes Henrich |
description | This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength
λ
|
doi_str_mv | 10.1007/s10404-017-2000-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962715960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962715960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNNk0R1n8BwsuqOeQpombpdvWpAX99rZUxIunGWbem3n8CLlEuEYAeZMQOPAMUGYMALLPI7LAFeYZVwqOf_uCnZKzlPYAXDKEBXnZmOQi7do6pF1o3qlpKsq2W5r6ONh-iNOs9TQ0KVSOHoKNra-HUAVL7c40javTuKR-SK6iKdTBmnNy4k2d3MVPXZK3-7vX9WO2eX54Wt9uMpsL1WcerQImhBmjAFhTCCxYBYBK8sKWHgsOpeE5N8JKqySrHJRCIK9K6ctc5UtyNd_tYvsxuNTrfTvEZnypUa2YRKFWMKpwVo3JU4rO6y6Gg4lfGkFP7PTMTo_s9MROf44eNntSNwFw8c_lf03fFF1xOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962715960</pqid></control><display><type>article</type><title>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</title><source>Springer Nature</source><creator>Weingarten, Christian ; Steenhusen, Sönke ; Hermans, Martin ; Willenborg, Edgar ; Schleifenbaum, Johannes Henrich</creator><creatorcontrib>Weingarten, Christian ; Steenhusen, Sönke ; Hermans, Martin ; Willenborg, Edgar ; Schleifenbaum, Johannes Henrich</creatorcontrib><description>This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength
λ
< 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-017-2000-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Addition polymerization ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Channels ; Engineering ; Engineering Fluid Dynamics ; Form accuracy ; Fused silica ; Heating ; Laser beam heating ; Lasers ; Melting ; Microchannels ; Microfluidics ; Microscopy ; Nanotechnology and Microengineering ; Polishing ; Polymerization ; Polymers ; Post-production processing ; Rapid prototyping ; Research Paper ; Silica ; Silicon dioxide ; Structures ; Surface roughness ; Surface tension ; Wavelength</subject><ispartof>Microfluidics and nanofluidics, 2017-11, Vol.21 (11), p.1-9, Article 165</ispartof><rights>The Author(s) 2017</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</citedby><cites>FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</cites><orcidid>0000-0003-3078-438X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weingarten, Christian</creatorcontrib><creatorcontrib>Steenhusen, Sönke</creatorcontrib><creatorcontrib>Hermans, Martin</creatorcontrib><creatorcontrib>Willenborg, Edgar</creatorcontrib><creatorcontrib>Schleifenbaum, Johannes Henrich</creatorcontrib><title>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength
λ
< 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.</description><subject>Addition polymerization</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Channels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Form accuracy</subject><subject>Fused silica</subject><subject>Heating</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Melting</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Nanotechnology and Microengineering</subject><subject>Polishing</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Post-production processing</subject><subject>Rapid prototyping</subject><subject>Research Paper</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Structures</subject><subject>Surface roughness</subject><subject>Surface tension</subject><subject>Wavelength</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNNk0R1n8BwsuqOeQpombpdvWpAX99rZUxIunGWbem3n8CLlEuEYAeZMQOPAMUGYMALLPI7LAFeYZVwqOf_uCnZKzlPYAXDKEBXnZmOQi7do6pF1o3qlpKsq2W5r6ONh-iNOs9TQ0KVSOHoKNra-HUAVL7c40javTuKR-SK6iKdTBmnNy4k2d3MVPXZK3-7vX9WO2eX54Wt9uMpsL1WcerQImhBmjAFhTCCxYBYBK8sKWHgsOpeE5N8JKqySrHJRCIK9K6ctc5UtyNd_tYvsxuNTrfTvEZnypUa2YRKFWMKpwVo3JU4rO6y6Gg4lfGkFP7PTMTo_s9MROf44eNntSNwFw8c_lf03fFF1xOA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Weingarten, Christian</creator><creator>Steenhusen, Sönke</creator><creator>Hermans, Martin</creator><creator>Willenborg, Edgar</creator><creator>Schleifenbaum, Johannes Henrich</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3078-438X</orcidid></search><sort><creationdate>20171101</creationdate><title>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</title><author>Weingarten, Christian ; Steenhusen, Sönke ; Hermans, Martin ; Willenborg, Edgar ; Schleifenbaum, Johannes Henrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addition polymerization</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Channels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Form accuracy</topic><topic>Fused silica</topic><topic>Heating</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Melting</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Nanotechnology and Microengineering</topic><topic>Polishing</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Post-production processing</topic><topic>Rapid prototyping</topic><topic>Research Paper</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Structures</topic><topic>Surface roughness</topic><topic>Surface tension</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weingarten, Christian</creatorcontrib><creatorcontrib>Steenhusen, Sönke</creatorcontrib><creatorcontrib>Hermans, Martin</creatorcontrib><creatorcontrib>Willenborg, Edgar</creatorcontrib><creatorcontrib>Schleifenbaum, Johannes Henrich</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weingarten, Christian</au><au>Steenhusen, Sönke</au><au>Hermans, Martin</au><au>Willenborg, Edgar</au><au>Schleifenbaum, Johannes Henrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>21</volume><issue>11</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>165</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength
λ
< 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-017-2000-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3078-438X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2017-11, Vol.21 (11), p.1-9, Article 165 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1962715960 |
source | Springer Nature |
subjects | Addition polymerization Analytical Chemistry Biomedical Engineering and Bioengineering Channels Engineering Engineering Fluid Dynamics Form accuracy Fused silica Heating Laser beam heating Lasers Melting Microchannels Microfluidics Microscopy Nanotechnology and Microengineering Polishing Polymerization Polymers Post-production processing Rapid prototyping Research Paper Silica Silicon dioxide Structures Surface roughness Surface tension Wavelength |
title | Laser polishing and 2PP structuring of inside microfluidic channels in fused silica |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20polishing%20and%202PP%20structuring%20of%20inside%20microfluidic%20channels%20in%20fused%20silica&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Weingarten,%20Christian&rft.date=2017-11-01&rft.volume=21&rft.issue=11&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=165&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-017-2000-x&rft_dat=%3Cproquest_cross%3E1962715960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1962715960&rft_id=info:pmid/&rfr_iscdi=true |