Loading…

Laser polishing and 2PP structuring of inside microfluidic channels in fused silica

This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) ca...

Full description

Saved in:
Bibliographic Details
Published in:Microfluidics and nanofluidics 2017-11, Vol.21 (11), p.1-9, Article 165
Main Authors: Weingarten, Christian, Steenhusen, Sönke, Hermans, Martin, Willenborg, Edgar, Schleifenbaum, Johannes Henrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393
cites cdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393
container_end_page 9
container_issue 11
container_start_page 1
container_title Microfluidics and nanofluidics
container_volume 21
creator Weingarten, Christian
Steenhusen, Sönke
Hermans, Martin
Willenborg, Edgar
Schleifenbaum, Johannes Henrich
description This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength λ  
doi_str_mv 10.1007/s10404-017-2000-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1962715960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962715960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNNk0R1n8BwsuqOeQpombpdvWpAX99rZUxIunGWbem3n8CLlEuEYAeZMQOPAMUGYMALLPI7LAFeYZVwqOf_uCnZKzlPYAXDKEBXnZmOQi7do6pF1o3qlpKsq2W5r6ONh-iNOs9TQ0KVSOHoKNra-HUAVL7c40javTuKR-SK6iKdTBmnNy4k2d3MVPXZK3-7vX9WO2eX54Wt9uMpsL1WcerQImhBmjAFhTCCxYBYBK8sKWHgsOpeE5N8JKqySrHJRCIK9K6ctc5UtyNd_tYvsxuNTrfTvEZnypUa2YRKFWMKpwVo3JU4rO6y6Gg4lfGkFP7PTMTo_s9MROf44eNntSNwFw8c_lf03fFF1xOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962715960</pqid></control><display><type>article</type><title>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</title><source>Springer Nature</source><creator>Weingarten, Christian ; Steenhusen, Sönke ; Hermans, Martin ; Willenborg, Edgar ; Schleifenbaum, Johannes Henrich</creator><creatorcontrib>Weingarten, Christian ; Steenhusen, Sönke ; Hermans, Martin ; Willenborg, Edgar ; Schleifenbaum, Johannes Henrich</creatorcontrib><description>This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength λ  &lt; 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-017-2000-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Addition polymerization ; Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Channels ; Engineering ; Engineering Fluid Dynamics ; Form accuracy ; Fused silica ; Heating ; Laser beam heating ; Lasers ; Melting ; Microchannels ; Microfluidics ; Microscopy ; Nanotechnology and Microengineering ; Polishing ; Polymerization ; Polymers ; Post-production processing ; Rapid prototyping ; Research Paper ; Silica ; Silicon dioxide ; Structures ; Surface roughness ; Surface tension ; Wavelength</subject><ispartof>Microfluidics and nanofluidics, 2017-11, Vol.21 (11), p.1-9, Article 165</ispartof><rights>The Author(s) 2017</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</citedby><cites>FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</cites><orcidid>0000-0003-3078-438X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Weingarten, Christian</creatorcontrib><creatorcontrib>Steenhusen, Sönke</creatorcontrib><creatorcontrib>Hermans, Martin</creatorcontrib><creatorcontrib>Willenborg, Edgar</creatorcontrib><creatorcontrib>Schleifenbaum, Johannes Henrich</creatorcontrib><title>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength λ  &lt; 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.</description><subject>Addition polymerization</subject><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Channels</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Form accuracy</subject><subject>Fused silica</subject><subject>Heating</subject><subject>Laser beam heating</subject><subject>Lasers</subject><subject>Melting</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Nanotechnology and Microengineering</subject><subject>Polishing</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Post-production processing</subject><subject>Rapid prototyping</subject><subject>Research Paper</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Structures</subject><subject>Surface roughness</subject><subject>Surface tension</subject><subject>Wavelength</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNNk0R1n8BwsuqOeQpombpdvWpAX99rZUxIunGWbem3n8CLlEuEYAeZMQOPAMUGYMALLPI7LAFeYZVwqOf_uCnZKzlPYAXDKEBXnZmOQi7do6pF1o3qlpKsq2W5r6ONh-iNOs9TQ0KVSOHoKNra-HUAVL7c40javTuKR-SK6iKdTBmnNy4k2d3MVPXZK3-7vX9WO2eX54Wt9uMpsL1WcerQImhBmjAFhTCCxYBYBK8sKWHgsOpeE5N8JKqySrHJRCIK9K6ctc5UtyNd_tYvsxuNTrfTvEZnypUa2YRKFWMKpwVo3JU4rO6y6Gg4lfGkFP7PTMTo_s9MROf44eNntSNwFw8c_lf03fFF1xOA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Weingarten, Christian</creator><creator>Steenhusen, Sönke</creator><creator>Hermans, Martin</creator><creator>Willenborg, Edgar</creator><creator>Schleifenbaum, Johannes Henrich</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3078-438X</orcidid></search><sort><creationdate>20171101</creationdate><title>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</title><author>Weingarten, Christian ; Steenhusen, Sönke ; Hermans, Martin ; Willenborg, Edgar ; Schleifenbaum, Johannes Henrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addition polymerization</topic><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Channels</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Form accuracy</topic><topic>Fused silica</topic><topic>Heating</topic><topic>Laser beam heating</topic><topic>Lasers</topic><topic>Melting</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Nanotechnology and Microengineering</topic><topic>Polishing</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Post-production processing</topic><topic>Rapid prototyping</topic><topic>Research Paper</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Structures</topic><topic>Surface roughness</topic><topic>Surface tension</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weingarten, Christian</creatorcontrib><creatorcontrib>Steenhusen, Sönke</creatorcontrib><creatorcontrib>Hermans, Martin</creatorcontrib><creatorcontrib>Willenborg, Edgar</creatorcontrib><creatorcontrib>Schleifenbaum, Johannes Henrich</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weingarten, Christian</au><au>Steenhusen, Sönke</au><au>Hermans, Martin</au><au>Willenborg, Edgar</au><au>Schleifenbaum, Johannes Henrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser polishing and 2PP structuring of inside microfluidic channels in fused silica</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>21</volume><issue>11</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>165</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>This study presents the development of post-processing steps for microfluidics fabricated with selective laser etching (SLE) in fused silica. In a first step, the SLE surface—even inner walls of microfluidic channels—can be smoothed by laser polishing. In addition, two-photon polymerization (2PP) can be used to manufacture polymer microstructures and microcomponents inside the microfluidic channels. The reduction in the surface roughness by laser polishing is a remelting process. While heating the glass surface above softening temperature, laser radiation relocates material thanks to the surface tension. With laser polishing, the RMS roughness of SLE surfaces can be reduced from 12 µm down to 3 nm for spatial wavelength λ  &lt; 400 µm. Thanks to the laser polishing, fluidic processes as well as particles in microchannels can be observed with microscopy. A manufactured microfluidic demonstrates that SLE and laser polishing can be combined successfully. By developing two-photon polymerization (2PP) processing in microchannels we aim to enable new applications with sophisticated 3D structures inside the microchannel. With 2PP, lenses with a diameter of 50 µm are processed with a form accuracy rms of 70 nm. In addition, this study demonstrates that 3D structures can be fabricated inside the microchannels manufactured with SLE. Thanks to the combination of SLE, laser polishing and 2PP, research is pioneering new applications for microfluidics made of fused silica.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-017-2000-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3078-438X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2017-11, Vol.21 (11), p.1-9, Article 165
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1962715960
source Springer Nature
subjects Addition polymerization
Analytical Chemistry
Biomedical Engineering and Bioengineering
Channels
Engineering
Engineering Fluid Dynamics
Form accuracy
Fused silica
Heating
Laser beam heating
Lasers
Melting
Microchannels
Microfluidics
Microscopy
Nanotechnology and Microengineering
Polishing
Polymerization
Polymers
Post-production processing
Rapid prototyping
Research Paper
Silica
Silicon dioxide
Structures
Surface roughness
Surface tension
Wavelength
title Laser polishing and 2PP structuring of inside microfluidic channels in fused silica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20polishing%20and%202PP%20structuring%20of%20inside%20microfluidic%20channels%20in%20fused%20silica&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Weingarten,%20Christian&rft.date=2017-11-01&rft.volume=21&rft.issue=11&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=165&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-017-2000-x&rft_dat=%3Cproquest_cross%3E1962715960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f1c90255a47200ca85182d0019748cbf1840ba434a5c7c972de0b5514db7fb393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1962715960&rft_id=info:pmid/&rfr_iscdi=true