Loading…

Balance between S -nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form -nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physiology: Cell Physiology 2017-07, Vol.313 (1), p.C11-C26
Main Authors: Yamashita, Aline M S, Ancillotti, Maryana T C, Rangel, Luciana P, Fontenele, Marcio, Figueiredo-Freitas, Cicero, Possidonio, Ana C, Soares, Carolina P, Sorenson, Martha M, Mermelstein, Claudia, Nogueira, Leonardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03
cites cdi_FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03
container_end_page C26
container_issue 1
container_start_page C11
container_title American Journal of Physiology: Cell Physiology
container_volume 313
creator Yamashita, Aline M S
Ancillotti, Maryana T C
Rangel, Luciana P
Fontenele, Marcio
Figueiredo-Freitas, Cicero
Possidonio, Ana C
Soares, Carolina P
Sorenson, Martha M
Mermelstein, Claudia
Nogueira, Leonardo
description Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form -nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of -nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without -nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.
doi_str_mv 10.1152/ajpcell.00140.2016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1963419509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963419509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03</originalsourceid><addsrcrecordid>eNpVkMtu2zAQRYkiQeOk_YEuCgJZyxk-ZS5bIy_AQBZJ1gJFjgoZFOWKUgr9Qr46dOwUyGY44Nx7hzyE_GCwZEzxK7vdOQxhCcAkLDkw_YUs8oAXTGlxQhYgtCg0k-KMnKe0BQDJtflKzvhKrJhiZkFef9tgo0Na4_gPMdJHWsR2HPo0Bzu2faQ2eurx813X-ym3mGg393WwaaS7oQ9tg8NB0EaPO8wljmGmfUNTH6Y6IP0z2TiHOVA3u-xDat3YvrybvpHTxoaE34_nBXm-uX5a3xWbh9v79a9N4bgBXUjufKmk11oy4TUAZ8rwxutV6Q1AXar9pOSNK7W2HBvNJRdKukZJo2sQF-TykJuf_HfCNFbbfhpiXlkxo4VkRoHJKn5QufzvNGBT7Ya2s8NcMaj2-Ksj_uodf7XHn00_j9FT3aH_b_ngLd4Ar_-EyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963419509</pqid></control><display><type>article</type><title>Balance between S -nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation</title><source>American Physiological Society Free</source><creator>Yamashita, Aline M S ; Ancillotti, Maryana T C ; Rangel, Luciana P ; Fontenele, Marcio ; Figueiredo-Freitas, Cicero ; Possidonio, Ana C ; Soares, Carolina P ; Sorenson, Martha M ; Mermelstein, Claudia ; Nogueira, Leonardo</creator><creatorcontrib>Yamashita, Aline M S ; Ancillotti, Maryana T C ; Rangel, Luciana P ; Fontenele, Marcio ; Figueiredo-Freitas, Cicero ; Possidonio, Ana C ; Soares, Carolina P ; Sorenson, Martha M ; Mermelstein, Claudia ; Nogueira, Leonardo</creatorcontrib><description>Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form -nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of -nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without -nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.</description><identifier>ISSN: 0363-6143</identifier><identifier>EISSN: 1522-1563</identifier><identifier>DOI: 10.1152/ajpcell.00140.2016</identifier><identifier>PMID: 28381519</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Aldehyde Oxidoreductases - antagonists &amp; inhibitors ; Aldehyde Oxidoreductases - genetics ; Aldehyde Oxidoreductases - metabolism ; Animals ; Cell Differentiation ; Cell Fusion ; Cell proliferation ; Cells ; Chick Embryo ; Cyclic AMP - metabolism ; Cyclic AMP - pharmacology ; Cyclic GMP ; Cyclic GMP - analogs &amp; derivatives ; Cyclic GMP - pharmacology ; Cysteine - analogs &amp; derivatives ; Cysteine - metabolism ; Cysteine - pharmacology ; Cytology ; Enzyme Inhibitors - pharmacology ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Fusion ; Gene Expression Regulation, Developmental ; Guanylate cyclase ; Morphology ; Muscle Development - drug effects ; Muscle Development - genetics ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Myoblasts ; Myoblasts - cytology ; Myoblasts - drug effects ; Myoblasts - metabolism ; Myogenesis ; Myotubes ; Nitric oxide ; Nitric Oxide - metabolism ; Nitric Oxide Synthase Type II - genetics ; Nitric Oxide Synthase Type II - metabolism ; Nitric-oxide synthase ; Primary Cell Culture ; Reductase ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; S-Nitrosoglutathione - metabolism ; S-Nitrosothiols - metabolism ; S-Nitrosothiols - pharmacology ; Signal Transduction ; siRNA ; Skeletal muscle ; Soluble Guanylyl Cyclase - genetics ; Soluble Guanylyl Cyclase - metabolism ; Soluble Guanylyl Cyclase - pharmacology ; Studies ; Supplements ; Thionucleotides - pharmacology ; Triazenes - pharmacology</subject><ispartof>American Journal of Physiology: Cell Physiology, 2017-07, Vol.313 (1), p.C11-C26</ispartof><rights>Copyright © 2017 the American Physiological Society.</rights><rights>Copyright American Physiological Society Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03</citedby><cites>FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03</cites><orcidid>0000-0001-5194-9126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28381519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamashita, Aline M S</creatorcontrib><creatorcontrib>Ancillotti, Maryana T C</creatorcontrib><creatorcontrib>Rangel, Luciana P</creatorcontrib><creatorcontrib>Fontenele, Marcio</creatorcontrib><creatorcontrib>Figueiredo-Freitas, Cicero</creatorcontrib><creatorcontrib>Possidonio, Ana C</creatorcontrib><creatorcontrib>Soares, Carolina P</creatorcontrib><creatorcontrib>Sorenson, Martha M</creatorcontrib><creatorcontrib>Mermelstein, Claudia</creatorcontrib><creatorcontrib>Nogueira, Leonardo</creatorcontrib><title>Balance between S -nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form -nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of -nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without -nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.</description><subject>Aldehyde Oxidoreductases - antagonists &amp; inhibitors</subject><subject>Aldehyde Oxidoreductases - genetics</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Cell Fusion</subject><subject>Cell proliferation</subject><subject>Cells</subject><subject>Chick Embryo</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP - pharmacology</subject><subject>Cyclic GMP</subject><subject>Cyclic GMP - analogs &amp; derivatives</subject><subject>Cyclic GMP - pharmacology</subject><subject>Cysteine - analogs &amp; derivatives</subject><subject>Cysteine - metabolism</subject><subject>Cysteine - pharmacology</subject><subject>Cytology</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Fusion</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Guanylate cyclase</subject><subject>Morphology</subject><subject>Muscle Development - drug effects</subject><subject>Muscle Development - genetics</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Myoblasts</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - drug effects</subject><subject>Myoblasts - metabolism</subject><subject>Myogenesis</subject><subject>Myotubes</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase Type II - genetics</subject><subject>Nitric Oxide Synthase Type II - metabolism</subject><subject>Nitric-oxide synthase</subject><subject>Primary Cell Culture</subject><subject>Reductase</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>S-Nitrosoglutathione - metabolism</subject><subject>S-Nitrosothiols - metabolism</subject><subject>S-Nitrosothiols - pharmacology</subject><subject>Signal Transduction</subject><subject>siRNA</subject><subject>Skeletal muscle</subject><subject>Soluble Guanylyl Cyclase - genetics</subject><subject>Soluble Guanylyl Cyclase - metabolism</subject><subject>Soluble Guanylyl Cyclase - pharmacology</subject><subject>Studies</subject><subject>Supplements</subject><subject>Thionucleotides - pharmacology</subject><subject>Triazenes - pharmacology</subject><issn>0363-6143</issn><issn>1522-1563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkMtu2zAQRYkiQeOk_YEuCgJZyxk-ZS5bIy_AQBZJ1gJFjgoZFOWKUgr9Qr46dOwUyGY44Nx7hzyE_GCwZEzxK7vdOQxhCcAkLDkw_YUs8oAXTGlxQhYgtCg0k-KMnKe0BQDJtflKzvhKrJhiZkFef9tgo0Na4_gPMdJHWsR2HPo0Bzu2faQ2eurx813X-ym3mGg393WwaaS7oQ9tg8NB0EaPO8wljmGmfUNTH6Y6IP0z2TiHOVA3u-xDat3YvrybvpHTxoaE34_nBXm-uX5a3xWbh9v79a9N4bgBXUjufKmk11oy4TUAZ8rwxutV6Q1AXar9pOSNK7W2HBvNJRdKukZJo2sQF-TykJuf_HfCNFbbfhpiXlkxo4VkRoHJKn5QufzvNGBT7Ya2s8NcMaj2-Ksj_uodf7XHn00_j9FT3aH_b_ngLd4Ar_-EyQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Yamashita, Aline M S</creator><creator>Ancillotti, Maryana T C</creator><creator>Rangel, Luciana P</creator><creator>Fontenele, Marcio</creator><creator>Figueiredo-Freitas, Cicero</creator><creator>Possidonio, Ana C</creator><creator>Soares, Carolina P</creator><creator>Sorenson, Martha M</creator><creator>Mermelstein, Claudia</creator><creator>Nogueira, Leonardo</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><orcidid>https://orcid.org/0000-0001-5194-9126</orcidid></search><sort><creationdate>20170701</creationdate><title>Balance between S -nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation</title><author>Yamashita, Aline M S ; Ancillotti, Maryana T C ; Rangel, Luciana P ; Fontenele, Marcio ; Figueiredo-Freitas, Cicero ; Possidonio, Ana C ; Soares, Carolina P ; Sorenson, Martha M ; Mermelstein, Claudia ; Nogueira, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aldehyde Oxidoreductases - antagonists &amp; inhibitors</topic><topic>Aldehyde Oxidoreductases - genetics</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Cell Fusion</topic><topic>Cell proliferation</topic><topic>Cells</topic><topic>Chick Embryo</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP - pharmacology</topic><topic>Cyclic GMP</topic><topic>Cyclic GMP - analogs &amp; derivatives</topic><topic>Cyclic GMP - pharmacology</topic><topic>Cysteine - analogs &amp; derivatives</topic><topic>Cysteine - metabolism</topic><topic>Cysteine - pharmacology</topic><topic>Cytology</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Fusion</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Guanylate cyclase</topic><topic>Morphology</topic><topic>Muscle Development - drug effects</topic><topic>Muscle Development - genetics</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Myoblasts</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - drug effects</topic><topic>Myoblasts - metabolism</topic><topic>Myogenesis</topic><topic>Myotubes</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase Type II - genetics</topic><topic>Nitric Oxide Synthase Type II - metabolism</topic><topic>Nitric-oxide synthase</topic><topic>Primary Cell Culture</topic><topic>Reductase</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>S-Nitrosoglutathione - metabolism</topic><topic>S-Nitrosothiols - metabolism</topic><topic>S-Nitrosothiols - pharmacology</topic><topic>Signal Transduction</topic><topic>siRNA</topic><topic>Skeletal muscle</topic><topic>Soluble Guanylyl Cyclase - genetics</topic><topic>Soluble Guanylyl Cyclase - metabolism</topic><topic>Soluble Guanylyl Cyclase - pharmacology</topic><topic>Studies</topic><topic>Supplements</topic><topic>Thionucleotides - pharmacology</topic><topic>Triazenes - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamashita, Aline M S</creatorcontrib><creatorcontrib>Ancillotti, Maryana T C</creatorcontrib><creatorcontrib>Rangel, Luciana P</creatorcontrib><creatorcontrib>Fontenele, Marcio</creatorcontrib><creatorcontrib>Figueiredo-Freitas, Cicero</creatorcontrib><creatorcontrib>Possidonio, Ana C</creatorcontrib><creatorcontrib>Soares, Carolina P</creatorcontrib><creatorcontrib>Sorenson, Martha M</creatorcontrib><creatorcontrib>Mermelstein, Claudia</creatorcontrib><creatorcontrib>Nogueira, Leonardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamashita, Aline M S</au><au>Ancillotti, Maryana T C</au><au>Rangel, Luciana P</au><au>Fontenele, Marcio</au><au>Figueiredo-Freitas, Cicero</au><au>Possidonio, Ana C</au><au>Soares, Carolina P</au><au>Sorenson, Martha M</au><au>Mermelstein, Claudia</au><au>Nogueira, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balance between S -nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>313</volume><issue>1</issue><spage>C11</spage><epage>C26</epage><pages>C11-C26</pages><issn>0363-6143</issn><eissn>1522-1563</eissn><abstract>Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form -nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of -nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without -nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>28381519</pmid><doi>10.1152/ajpcell.00140.2016</doi><orcidid>https://orcid.org/0000-0001-5194-9126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2017-07, Vol.313 (1), p.C11-C26
issn 0363-6143
1522-1563
language eng
recordid cdi_proquest_journals_1963419509
source American Physiological Society Free
subjects Aldehyde Oxidoreductases - antagonists & inhibitors
Aldehyde Oxidoreductases - genetics
Aldehyde Oxidoreductases - metabolism
Animals
Cell Differentiation
Cell Fusion
Cell proliferation
Cells
Chick Embryo
Cyclic AMP - metabolism
Cyclic AMP - pharmacology
Cyclic GMP
Cyclic GMP - analogs & derivatives
Cyclic GMP - pharmacology
Cysteine - analogs & derivatives
Cysteine - metabolism
Cysteine - pharmacology
Cytology
Enzyme Inhibitors - pharmacology
Fibroblasts
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Fusion
Gene Expression Regulation, Developmental
Guanylate cyclase
Morphology
Muscle Development - drug effects
Muscle Development - genetics
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - metabolism
Myoblasts
Myoblasts - cytology
Myoblasts - drug effects
Myoblasts - metabolism
Myogenesis
Myotubes
Nitric oxide
Nitric Oxide - metabolism
Nitric Oxide Synthase Type II - genetics
Nitric Oxide Synthase Type II - metabolism
Nitric-oxide synthase
Primary Cell Culture
Reductase
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
S-Nitrosoglutathione - metabolism
S-Nitrosothiols - metabolism
S-Nitrosothiols - pharmacology
Signal Transduction
siRNA
Skeletal muscle
Soluble Guanylyl Cyclase - genetics
Soluble Guanylyl Cyclase - metabolism
Soluble Guanylyl Cyclase - pharmacology
Studies
Supplements
Thionucleotides - pharmacology
Triazenes - pharmacology
title Balance between S -nitrosylation and denitrosylation modulates myoblast proliferation independently of soluble guanylyl cyclase activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balance%20between%20S%20-nitrosylation%20and%20denitrosylation%20modulates%20myoblast%20proliferation%20independently%20of%20soluble%20guanylyl%20cyclase%20activation&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Yamashita,%20Aline%20M%20S&rft.date=2017-07-01&rft.volume=313&rft.issue=1&rft.spage=C11&rft.epage=C26&rft.pages=C11-C26&rft.issn=0363-6143&rft.eissn=1522-1563&rft_id=info:doi/10.1152/ajpcell.00140.2016&rft_dat=%3Cproquest_cross%3E1963419509%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2906-42cd754d66413d60021592fd687d900b75664172fc766a2ef6242354cf5496b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963419509&rft_id=info:pmid/28381519&rfr_iscdi=true