Loading…

The role of calcium in modulation of the kinetics of synchronous and asynchronous quantal release at the neuromuscular junction

To elucidate the mechanisms of calcium regulation of the kinetics of the evoked neurotransmitter quantal release, we have investigated the temporal parameters of acetylcholine secretion in the mouse neuro-muscular junction at varying extracellular calcium concentration, in the presence of calcium ch...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow). Supplement series A, Membrane and cell biology Membrane and cell biology, 2010-03, Vol.4 (1), p.77-84
Main Authors: Vasin, A. L., Samigullin, D. V., Bukharaeva, E. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To elucidate the mechanisms of calcium regulation of the kinetics of the evoked neurotransmitter quantal release, we have investigated the temporal parameters of acetylcholine secretion in the mouse neuro-muscular junction at varying extracellular calcium concentration, in the presence of calcium channel blockers or intracellular calcium buffers. Acetylcholine secretion was induced by the motor nerve stimulation at a low frequency, which did not produce facilitation of the neurotransmitter release. The analysis of histograms of synaptic delays of uniquantal endplate currents recorded during 50 ms after the presynaptic action potential revealed three components of the secretion process: early and late periods of synchronous release and a delayed asynchronous release. At reduced extracellular calcium level, the relative number of quanta released during the asynchronous phase of secretion increased, while the rate of quantal release during the early synchronous period decreased. The findings support the hypothesis of participation of low- and high-affinity calcium sensors with different calcium binding kinetics in regulation of, respectively, synchronous and asynchronous release of neurotransmitter quanta.
ISSN:1990-7478
1990-7494
DOI:10.1134/S1990747810010125