Loading…

Skill of real-time operational forecasts with the APCC multi-model ensemble prediction system during the period 2008–2015

This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008–2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-m...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2017-12, Vol.49 (11-12), p.4141-4156
Main Authors: Min, Young-Mi, Kryjov, Vladimir N., Oh, Sang Myeong, Lee, Hyun-Ju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008–2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012–2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008–2015 is similar to that of hindcast.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-017-3576-2