Loading…

An Effective Asphalt UV Blocking Material Based on Host-Guest Schiff Base/Layered Double Hydroxides

The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-guest system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N,N'bis(salicyl...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry 2017-11, Vol.35 (11), p.1701-1705
Main Authors: Xia, Chunhui, Gao, Rui, Li, Kaitao, Yang, Yang, Lin, Yanjun, Yan, Dongpeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of asphalt-based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host-guest system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N,N'bis(salicylidine)-4,4'-diaminostilbene-2,2'-disulfonic acid (SDSD), has been synthesized, which was intercalated into Zn-Al-LDH by anion-exchange method. FT-IR and XRD illustrate the layered organic-inorganic composite, Zn-Al-SDSD-LDH, has been successfully synthesized with high crystallinity. Laser particle size analyzer, SEM and TEM show that particle size distributions of Zn-Al-SDSD-LDH is in the range 100--500 nm. UV-vis absorption spectra show that Zn-Al-SDSD-LDH has better UV absorption than the pristine Zn-Al-LDH and SDSD. Furthermore, the mixture of asphalt and 3 wt% Zn-Al-SDSD-LDH presents enhanced UV blocking property relative to the pristine asphalt after irradiating by UV spray accelerated weathering test. Therefore, this work not only develops a new type of host-guest Zn-Al-SDSD- LDH, but also confirms it can be an effective asphalt UV blocking material for practical application.
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201700136