Loading…
Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells
Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prep...
Saved in:
Published in: | Polymers for advanced technologies 2017-12, Vol.28 (12), p.1945-1950 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3 |
container_end_page | 1950 |
container_issue | 12 |
container_start_page | 1945 |
container_title | Polymers for advanced technologies |
container_volume | 28 |
creator | Alex, Ancy Smitha M.S., Ananda Lekshmi V., Sekkar John, Bibin C., Gouri S.A., Ilangovan |
description | Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/pat.4085 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965054406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965054406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUgIMoOKfgnxDw4qX60jZpehzDXzDRwzyHtH3ZMrqmS1pk_72p8-rpPfg-3oOPkFsGDwwgfez18JCD5GdkxqAsE8YlO5_2PE0KlheX5CqEHUBkZTEjh3dbe9c778ZAa-0r11GN3m2wpb3HXnts6LCNeLOlel9Z7IYJhDB6pI0_2m5DIx2Q6kB15xqkez2gt7qlxnna2mFrxz218XCNbRuuyYXRbcCbvzknX89P6-Vrsvp4eVsuVkmdZcCT1ECTVo0WhTZSlCaDGrkWlREoBcuhyYoyk6IC2VRSFrXkRWEgCpKjTFPM5uTudLf37jBiGNTOjb6LLxUrBQee5yCidX-yYoUQPBrVe7vX_qgYqCmoikHVFDSqyUn9ti0e__XU52L96_8ARJx45Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965054406</pqid></control><display><type>article</type><title>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</title><source>Wiley</source><creator>Alex, Ancy Smitha ; M.S., Ananda Lekshmi ; V., Sekkar ; John, Bibin ; C., Gouri ; S.A., Ilangovan</creator><creatorcontrib>Alex, Ancy Smitha ; M.S., Ananda Lekshmi ; V., Sekkar ; John, Bibin ; C., Gouri ; S.A., Ilangovan</creatorcontrib><description>Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4085</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; anode ; Anodes ; Carbon ; carbon aerogel ; Carbonization ; Chemical synthesis ; Drying ; Electric cells ; Electrode materials ; Formaldehyde ; Lithium ; lithium ion battery ; Lithium-ion batteries ; Microscopy ; Morphology ; Pressure ; Sodium carbonate ; Sol-gel processes ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Polymers for advanced technologies, 2017-12, Vol.28 (12), p.1945-1950</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</citedby><cites>FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</cites><orcidid>0000-0001-9407-1931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alex, Ancy Smitha</creatorcontrib><creatorcontrib>M.S., Ananda Lekshmi</creatorcontrib><creatorcontrib>V., Sekkar</creatorcontrib><creatorcontrib>John, Bibin</creatorcontrib><creatorcontrib>C., Gouri</creatorcontrib><creatorcontrib>S.A., Ilangovan</creatorcontrib><title>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</title><title>Polymers for advanced technologies</title><description>Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.</description><subject>Aerogels</subject><subject>anode</subject><subject>Anodes</subject><subject>Carbon</subject><subject>carbon aerogel</subject><subject>Carbonization</subject><subject>Chemical synthesis</subject><subject>Drying</subject><subject>Electric cells</subject><subject>Electrode materials</subject><subject>Formaldehyde</subject><subject>Lithium</subject><subject>lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Pressure</subject><subject>Sodium carbonate</subject><subject>Sol-gel processes</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUgIMoOKfgnxDw4qX60jZpehzDXzDRwzyHtH3ZMrqmS1pk_72p8-rpPfg-3oOPkFsGDwwgfez18JCD5GdkxqAsE8YlO5_2PE0KlheX5CqEHUBkZTEjh3dbe9c778ZAa-0r11GN3m2wpb3HXnts6LCNeLOlel9Z7IYJhDB6pI0_2m5DIx2Q6kB15xqkez2gt7qlxnna2mFrxz218XCNbRuuyYXRbcCbvzknX89P6-Vrsvp4eVsuVkmdZcCT1ECTVo0WhTZSlCaDGrkWlREoBcuhyYoyk6IC2VRSFrXkRWEgCpKjTFPM5uTudLf37jBiGNTOjb6LLxUrBQee5yCidX-yYoUQPBrVe7vX_qgYqCmoikHVFDSqyUn9ti0e__XU52L96_8ARJx45Q</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Alex, Ancy Smitha</creator><creator>M.S., Ananda Lekshmi</creator><creator>V., Sekkar</creator><creator>John, Bibin</creator><creator>C., Gouri</creator><creator>S.A., Ilangovan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9407-1931</orcidid></search><sort><creationdate>201712</creationdate><title>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</title><author>Alex, Ancy Smitha ; M.S., Ananda Lekshmi ; V., Sekkar ; John, Bibin ; C., Gouri ; S.A., Ilangovan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerogels</topic><topic>anode</topic><topic>Anodes</topic><topic>Carbon</topic><topic>carbon aerogel</topic><topic>Carbonization</topic><topic>Chemical synthesis</topic><topic>Drying</topic><topic>Electric cells</topic><topic>Electrode materials</topic><topic>Formaldehyde</topic><topic>Lithium</topic><topic>lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Pressure</topic><topic>Sodium carbonate</topic><topic>Sol-gel processes</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alex, Ancy Smitha</creatorcontrib><creatorcontrib>M.S., Ananda Lekshmi</creatorcontrib><creatorcontrib>V., Sekkar</creatorcontrib><creatorcontrib>John, Bibin</creatorcontrib><creatorcontrib>C., Gouri</creatorcontrib><creatorcontrib>S.A., Ilangovan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alex, Ancy Smitha</au><au>M.S., Ananda Lekshmi</au><au>V., Sekkar</au><au>John, Bibin</au><au>C., Gouri</au><au>S.A., Ilangovan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2017-12</date><risdate>2017</risdate><volume>28</volume><issue>12</issue><spage>1945</spage><epage>1950</epage><pages>1945-1950</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4085</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9407-1931</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-7147 |
ispartof | Polymers for advanced technologies, 2017-12, Vol.28 (12), p.1945-1950 |
issn | 1042-7147 1099-1581 |
language | eng |
recordid | cdi_proquest_journals_1965054406 |
source | Wiley |
subjects | Aerogels anode Anodes Carbon carbon aerogel Carbonization Chemical synthesis Drying Electric cells Electrode materials Formaldehyde Lithium lithium ion battery Lithium-ion batteries Microscopy Morphology Pressure Sodium carbonate Sol-gel processes Transmission electron microscopy X-ray diffraction |
title | Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microporous%20carbon%20aerogel%20prepared%20through%20ambient%20pressure%20drying%20route%20as%20anode%20material%20for%20lithium%20ion%20cells&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Alex,%20Ancy%20Smitha&rft.date=2017-12&rft.volume=28&rft.issue=12&rft.spage=1945&rft.epage=1950&rft.pages=1945-1950&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4085&rft_dat=%3Cproquest_cross%3E1965054406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965054406&rft_id=info:pmid/&rfr_iscdi=true |