Loading…

Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells

Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prep...

Full description

Saved in:
Bibliographic Details
Published in:Polymers for advanced technologies 2017-12, Vol.28 (12), p.1945-1950
Main Authors: Alex, Ancy Smitha, M.S., Ananda Lekshmi, V., Sekkar, John, Bibin, C., Gouri, S.A., Ilangovan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3
cites cdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3
container_end_page 1950
container_issue 12
container_start_page 1945
container_title Polymers for advanced technologies
container_volume 28
creator Alex, Ancy Smitha
M.S., Ananda Lekshmi
V., Sekkar
John, Bibin
C., Gouri
S.A., Ilangovan
description Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/pat.4085
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1965054406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1965054406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUgIMoOKfgnxDw4qX60jZpehzDXzDRwzyHtH3ZMrqmS1pk_72p8-rpPfg-3oOPkFsGDwwgfez18JCD5GdkxqAsE8YlO5_2PE0KlheX5CqEHUBkZTEjh3dbe9c778ZAa-0r11GN3m2wpb3HXnts6LCNeLOlel9Z7IYJhDB6pI0_2m5DIx2Q6kB15xqkez2gt7qlxnna2mFrxz218XCNbRuuyYXRbcCbvzknX89P6-Vrsvp4eVsuVkmdZcCT1ECTVo0WhTZSlCaDGrkWlREoBcuhyYoyk6IC2VRSFrXkRWEgCpKjTFPM5uTudLf37jBiGNTOjb6LLxUrBQee5yCidX-yYoUQPBrVe7vX_qgYqCmoikHVFDSqyUn9ti0e__XU52L96_8ARJx45Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965054406</pqid></control><display><type>article</type><title>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</title><source>Wiley</source><creator>Alex, Ancy Smitha ; M.S., Ananda Lekshmi ; V., Sekkar ; John, Bibin ; C., Gouri ; S.A., Ilangovan</creator><creatorcontrib>Alex, Ancy Smitha ; M.S., Ananda Lekshmi ; V., Sekkar ; John, Bibin ; C., Gouri ; S.A., Ilangovan</creatorcontrib><description>Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.4085</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; anode ; Anodes ; Carbon ; carbon aerogel ; Carbonization ; Chemical synthesis ; Drying ; Electric cells ; Electrode materials ; Formaldehyde ; Lithium ; lithium ion battery ; Lithium-ion batteries ; Microscopy ; Morphology ; Pressure ; Sodium carbonate ; Sol-gel processes ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Polymers for advanced technologies, 2017-12, Vol.28 (12), p.1945-1950</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</citedby><cites>FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</cites><orcidid>0000-0001-9407-1931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alex, Ancy Smitha</creatorcontrib><creatorcontrib>M.S., Ananda Lekshmi</creatorcontrib><creatorcontrib>V., Sekkar</creatorcontrib><creatorcontrib>John, Bibin</creatorcontrib><creatorcontrib>C., Gouri</creatorcontrib><creatorcontrib>S.A., Ilangovan</creatorcontrib><title>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</title><title>Polymers for advanced technologies</title><description>Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Aerogels</subject><subject>anode</subject><subject>Anodes</subject><subject>Carbon</subject><subject>carbon aerogel</subject><subject>Carbonization</subject><subject>Chemical synthesis</subject><subject>Drying</subject><subject>Electric cells</subject><subject>Electrode materials</subject><subject>Formaldehyde</subject><subject>Lithium</subject><subject>lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Pressure</subject><subject>Sodium carbonate</subject><subject>Sol-gel processes</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUgIMoOKfgnxDw4qX60jZpehzDXzDRwzyHtH3ZMrqmS1pk_72p8-rpPfg-3oOPkFsGDwwgfez18JCD5GdkxqAsE8YlO5_2PE0KlheX5CqEHUBkZTEjh3dbe9c778ZAa-0r11GN3m2wpb3HXnts6LCNeLOlel9Z7IYJhDB6pI0_2m5DIx2Q6kB15xqkez2gt7qlxnna2mFrxz218XCNbRuuyYXRbcCbvzknX89P6-Vrsvp4eVsuVkmdZcCT1ECTVo0WhTZSlCaDGrkWlREoBcuhyYoyk6IC2VRSFrXkRWEgCpKjTFPM5uTudLf37jBiGNTOjb6LLxUrBQee5yCidX-yYoUQPBrVe7vX_qgYqCmoikHVFDSqyUn9ti0e__XU52L96_8ARJx45Q</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Alex, Ancy Smitha</creator><creator>M.S., Ananda Lekshmi</creator><creator>V., Sekkar</creator><creator>John, Bibin</creator><creator>C., Gouri</creator><creator>S.A., Ilangovan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9407-1931</orcidid></search><sort><creationdate>201712</creationdate><title>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</title><author>Alex, Ancy Smitha ; M.S., Ananda Lekshmi ; V., Sekkar ; John, Bibin ; C., Gouri ; S.A., Ilangovan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerogels</topic><topic>anode</topic><topic>Anodes</topic><topic>Carbon</topic><topic>carbon aerogel</topic><topic>Carbonization</topic><topic>Chemical synthesis</topic><topic>Drying</topic><topic>Electric cells</topic><topic>Electrode materials</topic><topic>Formaldehyde</topic><topic>Lithium</topic><topic>lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Pressure</topic><topic>Sodium carbonate</topic><topic>Sol-gel processes</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alex, Ancy Smitha</creatorcontrib><creatorcontrib>M.S., Ananda Lekshmi</creatorcontrib><creatorcontrib>V., Sekkar</creatorcontrib><creatorcontrib>John, Bibin</creatorcontrib><creatorcontrib>C., Gouri</creatorcontrib><creatorcontrib>S.A., Ilangovan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alex, Ancy Smitha</au><au>M.S., Ananda Lekshmi</au><au>V., Sekkar</au><au>John, Bibin</au><au>C., Gouri</au><au>S.A., Ilangovan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2017-12</date><risdate>2017</risdate><volume>28</volume><issue>12</issue><spage>1945</spage><epage>1950</epage><pages>1945-1950</pages><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>Carbon aerogel synthesized through a cost‐effective and easy method was evaluated and found to be a promising anode material for lithium ion cells. Carbon aerogel was prepared by carbonizing resorcinol–formaldehyde (RF) aerogel under inert atmosphere. Resorcinol–formaldehyde aerogel in turn was prepared through sol gel polymerization of resorcinol with formaldehyde using sodium carbonate as catalyst adopting ambient pressure drying route. The structure and the morphology of the prepared carbon aerogel are investigated using X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and surface area determined using N2–Brunauer–Emmett–Teller (BET) method. The TEM images reveal microporous morphology of the carbon aerogel particles. The evaluation of carbon aerogel as an anode material revealed promising specific capacity synergized with outstanding cyclability. The first cycle specific capacity was 288 mAh/g with an efficiency of 63% at C/10 rate. The material retained a capacity of 96.9% of the initial capacity with about 100% efficiency after 100 cycles, showing the excellent cyclability of the material. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pat.4085</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9407-1931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2017-12, Vol.28 (12), p.1945-1950
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_journals_1965054406
source Wiley
subjects Aerogels
anode
Anodes
Carbon
carbon aerogel
Carbonization
Chemical synthesis
Drying
Electric cells
Electrode materials
Formaldehyde
Lithium
lithium ion battery
Lithium-ion batteries
Microscopy
Morphology
Pressure
Sodium carbonate
Sol-gel processes
Transmission electron microscopy
X-ray diffraction
title Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microporous%20carbon%20aerogel%20prepared%20through%20ambient%20pressure%20drying%20route%20as%20anode%20material%20for%20lithium%20ion%20cells&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Alex,%20Ancy%20Smitha&rft.date=2017-12&rft.volume=28&rft.issue=12&rft.spage=1945&rft.epage=1950&rft.pages=1945-1950&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.4085&rft_dat=%3Cproquest_cross%3E1965054406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3305-2f0d2bda67af869f30ce5a6bf6e86140d379386b08db887c8577f0a6b85e822e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1965054406&rft_id=info:pmid/&rfr_iscdi=true