Loading…

The Force of Crystallization and Fracture Propagation during In-Situ Carbonation of Peridotite

Subsurface mineralization of CO2 by injection into (hydro-)fractured peridotites has been proposed as a carbon sequestration method. It is envisaged that the expansion in solid volume associated with the mineralization reaction leads to a build-up of stress, resulting in the opening of further fract...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2017-10, Vol.7 (10), p.190
Main Authors: van Noort, Reinier, Wolterbeek, Timotheus, Drury, Martyn, Kandianis, Michael, Spiers, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subsurface mineralization of CO2 by injection into (hydro-)fractured peridotites has been proposed as a carbon sequestration method. It is envisaged that the expansion in solid volume associated with the mineralization reaction leads to a build-up of stress, resulting in the opening of further fractures. We performed CO2-mineralization experiments on simulated fractures in peridotite materials under confined, hydrothermal conditions, to directly measure the induced stresses. Only one of these experiments resulted in the development of a stress, which was less than 5% of the theoretical maximum. We also performed one method control test in which we measured stress development during the hydration of MgO. Based on microstructural observations, as well as XRD and TGA measurements, we infer that, due to pore clogging and grain boundary healing at growing mineral interfaces, the transport of CO2, water and solutes into these sites inhibited reaction-related stress development. When grain boundary healing was impeded by the precipitation of silica, a small stress did develop. This implies that when applied to in-situ CO2-storage, the mineralization reaction will be limited by transport through clogged fractures, and proceed at a rate that is likely too slow for the process to accommodate the volumes of CO2 expected for sequestration.
ISSN:2075-163X
2075-163X
DOI:10.3390/min7100190