Loading…

Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance

[Display omitted] •The loading WO3 nanofilm results in an enhanced NH3 response of SnO2 film sensors.•Bilayer SnO2–WO3 sensors is advantageous over bare SnO2 and WO3 nanofilm sensors.•The catalyst effect of WO3 nanofilm on NH3 gas molecules is main contribution.•The mass-fabrication of miniaturized...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2017-10, Vol.224, p.163-170
Main Authors: Toan, Nguyen Van, Hung, Chu Manh, Duy, Nguyen Van, Hoa, Nguyen Duc, Le, Dang Thi Thanh, Hieu, Nguyen Van
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383
cites cdi_FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383
container_end_page 170
container_issue
container_start_page 163
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 224
creator Toan, Nguyen Van
Hung, Chu Manh
Duy, Nguyen Van
Hoa, Nguyen Duc
Le, Dang Thi Thanh
Hieu, Nguyen Van
description [Display omitted] •The loading WO3 nanofilm results in an enhanced NH3 response of SnO2 film sensors.•Bilayer SnO2–WO3 sensors is advantageous over bare SnO2 and WO3 nanofilm sensors.•The catalyst effect of WO3 nanofilm on NH3 gas molecules is main contribution.•The mass-fabrication of miniaturized and cost-effective NH3 sensors can be developed from the present work. Bilayer SnO2–WO3 nanofilm sensors with high sensitivity and selectivity for NH3 gas were developed. The sensitized WO3 nanofilms (5–15nm) were deposited on the top of SnO2 nanofilms without vacuum break via reactive sputtering. The SnO2 nanofilm sensitized with 10-nm-thick WO3 nanofilm exhibited the best performance for sensing NH3 gas. The gas response (Ra/Rg) value of SnO2–WO3 nanofilm sensor to 250ppm NH3 was as high as 7.1 at 300°C and increased by approximately threefold compared with that of the bare SnO2 nanofilm sensor. At 300°C, the cross-gas responses of the SnO2–WO3 nanofilm sensor to 250ppm H2 (Ra/Rg=1.5) and C2H5OH (Ra/Rg=1.4) were negligibly low. The catalytic effect of WO3 nanofilm on NH3 gas molecules mainly enhanced the NH3-gas-sensing performance of the SnO2 nanofilm sensor. This work proposes an effective platform for the mass-fabrication of miniaturized, cost-effective, and highly sensitive NH3 gas sensors.
doi_str_mv 10.1016/j.mseb.2017.08.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1966074384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510717301848</els_id><sourcerecordid>1966074384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWCeMHddxJDZQFYpU0QUglpbj2MVR4xS7ReqOO3BDToKjsmY1iz9_5v-H0CWBnADh123eRVPnFEiZg8gB2BEaEVEWGasYO0YjqCjJJgTKU3QWYwsAhFI6QrM7t1Z7E_CzX9Kfr--3ZYG98r116y5i2wds_Lvy2jT4aV7glYo4Gh-dX-GNCUnvBvEcnVi1jubib47R6_3sZTrPFsuHx-ntItNFxbYZa2wpLChKOa-bsrGTiSFVKXjNK1rpMqUyoGrNRerUUMMpCJ2SKlIoqwtRjNHV4e4m9B87E7ey7XfBp5eSVJxDyQrB0hY9bOnQxxiMlZvgOhX2koAccMlWDrjkgEuCkAlXMt0cTCbl_3QmyKidGYq7YPRWNr37z_4LR5FyUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966074384</pqid></control><display><type>article</type><title>Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance</title><source>Elsevier</source><creator>Toan, Nguyen Van ; Hung, Chu Manh ; Duy, Nguyen Van ; Hoa, Nguyen Duc ; Le, Dang Thi Thanh ; Hieu, Nguyen Van</creator><creatorcontrib>Toan, Nguyen Van ; Hung, Chu Manh ; Duy, Nguyen Van ; Hoa, Nguyen Duc ; Le, Dang Thi Thanh ; Hieu, Nguyen Van</creatorcontrib><description>[Display omitted] •The loading WO3 nanofilm results in an enhanced NH3 response of SnO2 film sensors.•Bilayer SnO2–WO3 sensors is advantageous over bare SnO2 and WO3 nanofilm sensors.•The catalyst effect of WO3 nanofilm on NH3 gas molecules is main contribution.•The mass-fabrication of miniaturized and cost-effective NH3 sensors can be developed from the present work. Bilayer SnO2–WO3 nanofilm sensors with high sensitivity and selectivity for NH3 gas were developed. The sensitized WO3 nanofilms (5–15nm) were deposited on the top of SnO2 nanofilms without vacuum break via reactive sputtering. The SnO2 nanofilm sensitized with 10-nm-thick WO3 nanofilm exhibited the best performance for sensing NH3 gas. The gas response (Ra/Rg) value of SnO2–WO3 nanofilm sensor to 250ppm NH3 was as high as 7.1 at 300°C and increased by approximately threefold compared with that of the bare SnO2 nanofilm sensor. At 300°C, the cross-gas responses of the SnO2–WO3 nanofilm sensor to 250ppm H2 (Ra/Rg=1.5) and C2H5OH (Ra/Rg=1.4) were negligibly low. The catalytic effect of WO3 nanofilm on NH3 gas molecules mainly enhanced the NH3-gas-sensing performance of the SnO2 nanofilm sensor. This work proposes an effective platform for the mass-fabrication of miniaturized, cost-effective, and highly sensitive NH3 gas sensors.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2017.08.004</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Ammonia ; Bilayers ; Catalysis ; Chemical synthesis ; Gas sensors ; Nanofilms ; NH3 gas sensor ; Reactive sputtering ; Selectivity ; SnO2 ; Thin films ; Tin dioxide ; Tungsten oxides ; WO3</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2017-10, Vol.224, p.163-170</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383</citedby><cites>FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Toan, Nguyen Van</creatorcontrib><creatorcontrib>Hung, Chu Manh</creatorcontrib><creatorcontrib>Duy, Nguyen Van</creatorcontrib><creatorcontrib>Hoa, Nguyen Duc</creatorcontrib><creatorcontrib>Le, Dang Thi Thanh</creatorcontrib><creatorcontrib>Hieu, Nguyen Van</creatorcontrib><title>Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted] •The loading WO3 nanofilm results in an enhanced NH3 response of SnO2 film sensors.•Bilayer SnO2–WO3 sensors is advantageous over bare SnO2 and WO3 nanofilm sensors.•The catalyst effect of WO3 nanofilm on NH3 gas molecules is main contribution.•The mass-fabrication of miniaturized and cost-effective NH3 sensors can be developed from the present work. Bilayer SnO2–WO3 nanofilm sensors with high sensitivity and selectivity for NH3 gas were developed. The sensitized WO3 nanofilms (5–15nm) were deposited on the top of SnO2 nanofilms without vacuum break via reactive sputtering. The SnO2 nanofilm sensitized with 10-nm-thick WO3 nanofilm exhibited the best performance for sensing NH3 gas. The gas response (Ra/Rg) value of SnO2–WO3 nanofilm sensor to 250ppm NH3 was as high as 7.1 at 300°C and increased by approximately threefold compared with that of the bare SnO2 nanofilm sensor. At 300°C, the cross-gas responses of the SnO2–WO3 nanofilm sensor to 250ppm H2 (Ra/Rg=1.5) and C2H5OH (Ra/Rg=1.4) were negligibly low. The catalytic effect of WO3 nanofilm on NH3 gas molecules mainly enhanced the NH3-gas-sensing performance of the SnO2 nanofilm sensor. This work proposes an effective platform for the mass-fabrication of miniaturized, cost-effective, and highly sensitive NH3 gas sensors.</description><subject>Ammonia</subject><subject>Bilayers</subject><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Gas sensors</subject><subject>Nanofilms</subject><subject>NH3 gas sensor</subject><subject>Reactive sputtering</subject><subject>Selectivity</subject><subject>SnO2</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tungsten oxides</subject><subject>WO3</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWCeMHddxJDZQFYpU0QUglpbj2MVR4xS7ReqOO3BDToKjsmY1iz9_5v-H0CWBnADh123eRVPnFEiZg8gB2BEaEVEWGasYO0YjqCjJJgTKU3QWYwsAhFI6QrM7t1Z7E_CzX9Kfr--3ZYG98r116y5i2wds_Lvy2jT4aV7glYo4Gh-dX-GNCUnvBvEcnVi1jubib47R6_3sZTrPFsuHx-ntItNFxbYZa2wpLChKOa-bsrGTiSFVKXjNK1rpMqUyoGrNRerUUMMpCJ2SKlIoqwtRjNHV4e4m9B87E7ey7XfBp5eSVJxDyQrB0hY9bOnQxxiMlZvgOhX2koAccMlWDrjkgEuCkAlXMt0cTCbl_3QmyKidGYq7YPRWNr37z_4LR5FyUw</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Toan, Nguyen Van</creator><creator>Hung, Chu Manh</creator><creator>Duy, Nguyen Van</creator><creator>Hoa, Nguyen Duc</creator><creator>Le, Dang Thi Thanh</creator><creator>Hieu, Nguyen Van</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201710</creationdate><title>Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance</title><author>Toan, Nguyen Van ; Hung, Chu Manh ; Duy, Nguyen Van ; Hoa, Nguyen Duc ; Le, Dang Thi Thanh ; Hieu, Nguyen Van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ammonia</topic><topic>Bilayers</topic><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Gas sensors</topic><topic>Nanofilms</topic><topic>NH3 gas sensor</topic><topic>Reactive sputtering</topic><topic>Selectivity</topic><topic>SnO2</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tungsten oxides</topic><topic>WO3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toan, Nguyen Van</creatorcontrib><creatorcontrib>Hung, Chu Manh</creatorcontrib><creatorcontrib>Duy, Nguyen Van</creatorcontrib><creatorcontrib>Hoa, Nguyen Duc</creatorcontrib><creatorcontrib>Le, Dang Thi Thanh</creatorcontrib><creatorcontrib>Hieu, Nguyen Van</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toan, Nguyen Van</au><au>Hung, Chu Manh</au><au>Duy, Nguyen Van</au><au>Hoa, Nguyen Duc</au><au>Le, Dang Thi Thanh</au><au>Hieu, Nguyen Van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2017-10</date><risdate>2017</risdate><volume>224</volume><spage>163</spage><epage>170</epage><pages>163-170</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted] •The loading WO3 nanofilm results in an enhanced NH3 response of SnO2 film sensors.•Bilayer SnO2–WO3 sensors is advantageous over bare SnO2 and WO3 nanofilm sensors.•The catalyst effect of WO3 nanofilm on NH3 gas molecules is main contribution.•The mass-fabrication of miniaturized and cost-effective NH3 sensors can be developed from the present work. Bilayer SnO2–WO3 nanofilm sensors with high sensitivity and selectivity for NH3 gas were developed. The sensitized WO3 nanofilms (5–15nm) were deposited on the top of SnO2 nanofilms without vacuum break via reactive sputtering. The SnO2 nanofilm sensitized with 10-nm-thick WO3 nanofilm exhibited the best performance for sensing NH3 gas. The gas response (Ra/Rg) value of SnO2–WO3 nanofilm sensor to 250ppm NH3 was as high as 7.1 at 300°C and increased by approximately threefold compared with that of the bare SnO2 nanofilm sensor. At 300°C, the cross-gas responses of the SnO2–WO3 nanofilm sensor to 250ppm H2 (Ra/Rg=1.5) and C2H5OH (Ra/Rg=1.4) were negligibly low. The catalytic effect of WO3 nanofilm on NH3 gas molecules mainly enhanced the NH3-gas-sensing performance of the SnO2 nanofilm sensor. This work proposes an effective platform for the mass-fabrication of miniaturized, cost-effective, and highly sensitive NH3 gas sensors.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2017.08.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2017-10, Vol.224, p.163-170
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_journals_1966074384
source Elsevier
subjects Ammonia
Bilayers
Catalysis
Chemical synthesis
Gas sensors
Nanofilms
NH3 gas sensor
Reactive sputtering
Selectivity
SnO2
Thin films
Tin dioxide
Tungsten oxides
WO3
title Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilayer%20SnO2%E2%80%93WO3%20nanofilms%20for%20enhanced%20NH3%20gas%20sensing%20performance&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Toan,%20Nguyen%20Van&rft.date=2017-10&rft.volume=224&rft.spage=163&rft.epage=170&rft.pages=163-170&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2017.08.004&rft_dat=%3Cproquest_cross%3E1966074384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-4df78f0a2266bd7df55e19786b6929c7000e0abc68016d2e6208c001a13afc383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1966074384&rft_id=info:pmid/&rfr_iscdi=true