Loading…

Solidification/stabilization of tannery sludge with iron-based nanoparticles and nano-biocomposites

This paper presents leaching behavior of chromium from the stabilized/solidified (S/S) matrixes of tannery sludge. S/S matrixes were formed using cement, and nanoparticles and nano-biocomposites. The chromium in tannery sludge was immobilized by ZVIN (zero-valent iron nanoparticles), MIN (magnetic i...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2017-02, Vol.76 (4), p.1-17, Article 158
Main Authors: Arthy, M., Phanikumar, B. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents leaching behavior of chromium from the stabilized/solidified (S/S) matrixes of tannery sludge. S/S matrixes were formed using cement, and nanoparticles and nano-biocomposites. The chromium in tannery sludge was immobilized by ZVIN (zero-valent iron nanoparticles), MIN (magnetic iron oxide nanoparticles), ZVIN–SB (zero-valent iron nanoparticles/sugarcane bagasse composite) and MIN–SB (magnetic iron oxide nanoparticles/sugarcane bagasse composite). The semi-dynamic leachate tests such as ANS 16.1 and ASTM C 1308 were performed to evaluate the efficacy of S/S matrixes. The parameters such as leaching rate, cumulative fraction leached, effective diffusivity, leachability index and leaching mechanism were calculated for the S/S matrixes containing sludge stabilized by nanoparticles and nano-biocomposites and unstabilized sludge. The leaching rate of chromium from the test specimens showed the effectiveness of nanoparticles and nano-biocomposites. Diffusion studies from the S/S matrixes indicated immobility of chromium. The mean leachability index was found to be higher than 13 for all the test specimens which shows that the S/S matrixes can be effectively utilized for ‘controlled applications.’ Further, nanoparticles and nano-biocomposites increased compressive strength of the S/S matrixes. XRD, SEM/EDX and FTIR revealed that chromium could be chemically fixed into cement matrixes.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-017-6478-z