Loading…

Characterization and adsorption of disperse dyes from wastewater onto cenospheres activated carbon composites

In the present research, coal fly ash, a waste by-product of thermal power plant, has been segregated to obtain hollow and spherical cenospheres which combined with activated carbon in different ratio for effectual remediation of wastewater. Fabricated cenospheres activated carbon (CNAC) composites...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2017-10, Vol.76 (20), p.1-12, Article 702
Main Authors: Markandeya, Shukla, S. P., Dhiman, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present research, coal fly ash, a waste by-product of thermal power plant, has been segregated to obtain hollow and spherical cenospheres which combined with activated carbon in different ratio for effectual remediation of wastewater. Fabricated cenospheres activated carbon (CNAC) composites were characterized by ATR-FTIR, SEM, XRD, BET and CILAS for functionality, surface modification, crystallinity, surface area, pore volume, pore size and particle size analysis, respectively. Batch adsorption has been applied to appraised maximum removal of Disperse Orange 25 (DO) and Disperse Blue 79:1 (DB) dyes at varying solution pH 2 to 12, adsorbent dose 0.1 g cenospheres + 0.1 g AC to 1.0 g cenospheres + 1.0 g AC, dye concentration 10 to 100 mg/L, agitation speed 80 to 240 rpm and contact time 5 to 300 min at three different temperatures (25, 35 and 45 °C). The maximum percentage removal was found to be 79 and 76% for DO and DB dyes, respectively, at optimized condition. Langmuir isotherm showed good interaction with adsorption data, and the obtained maximum equilibrium adsorption capacity was found to be 90.91 mg/g for DO and 83.33 mg/g for DB at 45 °C. Eventually, the negative ∆G° (− 7.513 for DO and − 7.767 for DB) has suggested the feasibility of dyes adsorption on CNAC composites.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-017-7030-x