Loading…

Forecasting cross-population innovation diffusion: A Bayesian approach

We introduce a cross-population, adaptive diffusion model that can be used to forecast the diffusion of an innovation at early stages of the diffusion curve. In this model, diffusion patterns across the populations depend on each other. We extend the model presented by Putsis, Balasubramanian, Kapla...

Full description

Saved in:
Bibliographic Details
Published in:International journal of research in marketing 2005-09, Vol.22 (3), p.293-308
Main Authors: van Everdingen, Yvonne M., Aghina, Wouter B., Fok, Dennis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3
cites cdi_FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3
container_end_page 308
container_issue 3
container_start_page 293
container_title International journal of research in marketing
container_volume 22
creator van Everdingen, Yvonne M.
Aghina, Wouter B.
Fok, Dennis
description We introduce a cross-population, adaptive diffusion model that can be used to forecast the diffusion of an innovation at early stages of the diffusion curve. In this model, diffusion patterns across the populations depend on each other. We extend the model presented by Putsis, Balasubramanian, Kaplan and Sen (1997) [Putsis, W.P., Balasubramanian, S., Kaplan, E.H., Sen, S.K., 1997. Mixing behavior in cross-country diffusion. Marketing Science, 16 (4), 354–369.] by introducing time-varying parameters. Furthermore, we apply the matching procedure as proposed by Dekimpe, Parker and Sarvary (1998) [Dekimpe, M.G., Parker, Ph.M., Sarvary, M., 1998. Staged estimation of international diffusion models: An application to global cellular telephone adoption. Technological Forecasting and Social Change, 57 (1–2), 105–132.]. We adaptively estimate the model parameters using an extension of the augmented Kalman Filter with Continuous States and Discrete observations, developed by Xie, Song, Sirbu and Wang (1997) [Xie, J., Song, M., Sirbu, M., Wang, Q., 1997. Kalman filter estimation of new product diffusion models. Journal of Marketing Research, 34 (3), 378–393.]. We apply the method to the diffusion of both Internet access at home and mobile telephony among households in 15 countries of the European Union. The results show that forecasts obtained from our model outperform those from independent diffusion models for each country separately, as well as forecasts from the mixing-behavior model by Putsis et al. (1997).
doi_str_mv 10.1016/j.ijresmar.2004.11.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_196671256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167811605000315</els_id><sourcerecordid>910254131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqXwCihiT_BtEttholQtIFVi6W459g04KnGwk0p9e1wCM9M9w_nR_Qi5BZoBBXbfZrb1GD6VzxaUFhlARml-RmYgeJ4KSuGczKKRpwKAXZKrEFoajYKLGdlsnEetwmC790R7F0Lau37cq8G6LrFd5w6TNLZpxhDVQ7JMntQRg1VdovreO6U_rslFo_YBb37vnOw2693qJd2-Pb-ulttU53k1pLqGgkJphC5ZzaihpTFFaTQqLlDouiqQK1bVCgBNbpigAGXTcFFxZIj5nNxNtXH1a8QwyNaNvouLEirGOCxKFk1sMv2847GRvbeRzlEClSdispV_xOSJmASQkVgMPk5BjB8cLHoZtMVOo7GR0SCNs_9VfANGZXk6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196671256</pqid></control><display><type>article</type><title>Forecasting cross-population innovation diffusion: A Bayesian approach</title><source>Elsevier</source><creator>van Everdingen, Yvonne M. ; Aghina, Wouter B. ; Fok, Dennis</creator><creatorcontrib>van Everdingen, Yvonne M. ; Aghina, Wouter B. ; Fok, Dennis</creatorcontrib><description>We introduce a cross-population, adaptive diffusion model that can be used to forecast the diffusion of an innovation at early stages of the diffusion curve. In this model, diffusion patterns across the populations depend on each other. We extend the model presented by Putsis, Balasubramanian, Kaplan and Sen (1997) [Putsis, W.P., Balasubramanian, S., Kaplan, E.H., Sen, S.K., 1997. Mixing behavior in cross-country diffusion. Marketing Science, 16 (4), 354–369.] by introducing time-varying parameters. Furthermore, we apply the matching procedure as proposed by Dekimpe, Parker and Sarvary (1998) [Dekimpe, M.G., Parker, Ph.M., Sarvary, M., 1998. Staged estimation of international diffusion models: An application to global cellular telephone adoption. Technological Forecasting and Social Change, 57 (1–2), 105–132.]. We adaptively estimate the model parameters using an extension of the augmented Kalman Filter with Continuous States and Discrete observations, developed by Xie, Song, Sirbu and Wang (1997) [Xie, J., Song, M., Sirbu, M., Wang, Q., 1997. Kalman filter estimation of new product diffusion models. Journal of Marketing Research, 34 (3), 378–393.]. We apply the method to the diffusion of both Internet access at home and mobile telephony among households in 15 countries of the European Union. The results show that forecasts obtained from our model outperform those from independent diffusion models for each country separately, as well as forecasts from the mixing-behavior model by Putsis et al. (1997).</description><identifier>ISSN: 0167-8116</identifier><identifier>EISSN: 1873-8001</identifier><identifier>DOI: 10.1016/j.ijresmar.2004.11.003</identifier><identifier>CODEN: IJRME6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bayesian analysis ; Bayesian estimation ; Cross-population diffusion ; Forecasting ; Innovations ; International marketing ; Market penetration ; Product introduction ; Studies</subject><ispartof>International journal of research in marketing, 2005-09, Vol.22 (3), p.293-308</ispartof><rights>2005 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3</citedby><cites>FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>van Everdingen, Yvonne M.</creatorcontrib><creatorcontrib>Aghina, Wouter B.</creatorcontrib><creatorcontrib>Fok, Dennis</creatorcontrib><title>Forecasting cross-population innovation diffusion: A Bayesian approach</title><title>International journal of research in marketing</title><description>We introduce a cross-population, adaptive diffusion model that can be used to forecast the diffusion of an innovation at early stages of the diffusion curve. In this model, diffusion patterns across the populations depend on each other. We extend the model presented by Putsis, Balasubramanian, Kaplan and Sen (1997) [Putsis, W.P., Balasubramanian, S., Kaplan, E.H., Sen, S.K., 1997. Mixing behavior in cross-country diffusion. Marketing Science, 16 (4), 354–369.] by introducing time-varying parameters. Furthermore, we apply the matching procedure as proposed by Dekimpe, Parker and Sarvary (1998) [Dekimpe, M.G., Parker, Ph.M., Sarvary, M., 1998. Staged estimation of international diffusion models: An application to global cellular telephone adoption. Technological Forecasting and Social Change, 57 (1–2), 105–132.]. We adaptively estimate the model parameters using an extension of the augmented Kalman Filter with Continuous States and Discrete observations, developed by Xie, Song, Sirbu and Wang (1997) [Xie, J., Song, M., Sirbu, M., Wang, Q., 1997. Kalman filter estimation of new product diffusion models. Journal of Marketing Research, 34 (3), 378–393.]. We apply the method to the diffusion of both Internet access at home and mobile telephony among households in 15 countries of the European Union. The results show that forecasts obtained from our model outperform those from independent diffusion models for each country separately, as well as forecasts from the mixing-behavior model by Putsis et al. (1997).</description><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Cross-population diffusion</subject><subject>Forecasting</subject><subject>Innovations</subject><subject>International marketing</subject><subject>Market penetration</subject><subject>Product introduction</subject><subject>Studies</subject><issn>0167-8116</issn><issn>1873-8001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqXwCihiT_BtEttholQtIFVi6W459g04KnGwk0p9e1wCM9M9w_nR_Qi5BZoBBXbfZrb1GD6VzxaUFhlARml-RmYgeJ4KSuGczKKRpwKAXZKrEFoajYKLGdlsnEetwmC790R7F0Lau37cq8G6LrFd5w6TNLZpxhDVQ7JMntQRg1VdovreO6U_rslFo_YBb37vnOw2693qJd2-Pb-ulttU53k1pLqGgkJphC5ZzaihpTFFaTQqLlDouiqQK1bVCgBNbpigAGXTcFFxZIj5nNxNtXH1a8QwyNaNvouLEirGOCxKFk1sMv2847GRvbeRzlEClSdispV_xOSJmASQkVgMPk5BjB8cLHoZtMVOo7GR0SCNs_9VfANGZXk6</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>van Everdingen, Yvonne M.</creator><creator>Aghina, Wouter B.</creator><creator>Fok, Dennis</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050901</creationdate><title>Forecasting cross-population innovation diffusion: A Bayesian approach</title><author>van Everdingen, Yvonne M. ; Aghina, Wouter B. ; Fok, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Cross-population diffusion</topic><topic>Forecasting</topic><topic>Innovations</topic><topic>International marketing</topic><topic>Market penetration</topic><topic>Product introduction</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Everdingen, Yvonne M.</creatorcontrib><creatorcontrib>Aghina, Wouter B.</creatorcontrib><creatorcontrib>Fok, Dennis</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of research in marketing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Everdingen, Yvonne M.</au><au>Aghina, Wouter B.</au><au>Fok, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting cross-population innovation diffusion: A Bayesian approach</atitle><jtitle>International journal of research in marketing</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>22</volume><issue>3</issue><spage>293</spage><epage>308</epage><pages>293-308</pages><issn>0167-8116</issn><eissn>1873-8001</eissn><coden>IJRME6</coden><abstract>We introduce a cross-population, adaptive diffusion model that can be used to forecast the diffusion of an innovation at early stages of the diffusion curve. In this model, diffusion patterns across the populations depend on each other. We extend the model presented by Putsis, Balasubramanian, Kaplan and Sen (1997) [Putsis, W.P., Balasubramanian, S., Kaplan, E.H., Sen, S.K., 1997. Mixing behavior in cross-country diffusion. Marketing Science, 16 (4), 354–369.] by introducing time-varying parameters. Furthermore, we apply the matching procedure as proposed by Dekimpe, Parker and Sarvary (1998) [Dekimpe, M.G., Parker, Ph.M., Sarvary, M., 1998. Staged estimation of international diffusion models: An application to global cellular telephone adoption. Technological Forecasting and Social Change, 57 (1–2), 105–132.]. We adaptively estimate the model parameters using an extension of the augmented Kalman Filter with Continuous States and Discrete observations, developed by Xie, Song, Sirbu and Wang (1997) [Xie, J., Song, M., Sirbu, M., Wang, Q., 1997. Kalman filter estimation of new product diffusion models. Journal of Marketing Research, 34 (3), 378–393.]. We apply the method to the diffusion of both Internet access at home and mobile telephony among households in 15 countries of the European Union. The results show that forecasts obtained from our model outperform those from independent diffusion models for each country separately, as well as forecasts from the mixing-behavior model by Putsis et al. (1997).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijresmar.2004.11.003</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8116
ispartof International journal of research in marketing, 2005-09, Vol.22 (3), p.293-308
issn 0167-8116
1873-8001
language eng
recordid cdi_proquest_journals_196671256
source Elsevier
subjects Bayesian analysis
Bayesian estimation
Cross-population diffusion
Forecasting
Innovations
International marketing
Market penetration
Product introduction
Studies
title Forecasting cross-population innovation diffusion: A Bayesian approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20cross-population%20innovation%20diffusion:%20A%20Bayesian%20approach&rft.jtitle=International%20journal%20of%20research%20in%20marketing&rft.au=van%20Everdingen,%20Yvonne%20M.&rft.date=2005-09-01&rft.volume=22&rft.issue=3&rft.spage=293&rft.epage=308&rft.pages=293-308&rft.issn=0167-8116&rft.eissn=1873-8001&rft.coden=IJRME6&rft_id=info:doi/10.1016/j.ijresmar.2004.11.003&rft_dat=%3Cproquest_cross%3E910254131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-cb14015d8c56b60d05dd45dcea78e8cb94e7a69ba11ed3d680115ff7897e6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196671256&rft_id=info:pmid/&rfr_iscdi=true