Loading…

Standoff spatial heterodyne Raman spectrometer for mineralogical analysis

Raman spectroscopy is ideally suited for planetary exploration because of its ability to unambiguously identify minerals, organic compounds, and biomarkers. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Raman spectroscopy 2017-11, Vol.48 (11), p.1613-1617
Main Authors: Egan, Miles Jacob, Angel, S. M., Sharma, Shiv K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3
cites cdi_FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3
container_end_page 1617
container_issue 11
container_start_page 1613
container_title Journal of Raman spectroscopy
container_volume 48
creator Egan, Miles Jacob
Angel, S. M.
Sharma, Shiv K.
description Raman spectroscopy is ideally suited for planetary exploration because of its ability to unambiguously identify minerals, organic compounds, and biomarkers. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. Recently, we have evaluated a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer that provides high spectral resolution in a compact system without limiting light throughput. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals, including low Raman scattering efficiency olivine and feldspar minerals, in the 100–1260 cm−1 Raman fingerprint region with spatial heterodyne Raman spectrometer using 1.5‐cm‐diameter pulsed 532.078‐nm Nd:YAG laser beam. Copyright © 2017 John Wiley & Sons, Ltd. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. We have used a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer, that provides high spectral resolution in a compact system without limiting light throughout. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals.
doi_str_mv 10.1002/jrs.5121
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967712959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967712959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV8CcEvHhJnelmk-xRih-VgtDqeZkks5qSZOtuiuTfm1qvngZmHl6GV4hrhBkCzO-2PswUzvFETBB0FidKqVMxAZllMSR5ei4uQtgCgNYpTsRy01NXOWujsKO-pib65J69q4aOozW11I0HLnvv2sM-ss5Hbd2xp8Z91OXoqaNmCHW4FGeWmsBXf3Mq3h8f3hbP8er1abm4X8WllICxTAqdS1kpXWjJSFxVGStGC1QkZWVLpSAHtlggqdRiJQulJOVUpAQ6JTkVN8fcnXdfew692bq9H58IBnWaZTjXSo_q9qhK70LwbM3O1y35wSCYQ1FmLMocihppfKTfdcPDv868rDe__gfSyGrZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967712959</pqid></control><display><type>article</type><title>Standoff spatial heterodyne Raman spectrometer for mineralogical analysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Egan, Miles Jacob ; Angel, S. M. ; Sharma, Shiv K.</creator><creatorcontrib>Egan, Miles Jacob ; Angel, S. M. ; Sharma, Shiv K.</creatorcontrib><description>Raman spectroscopy is ideally suited for planetary exploration because of its ability to unambiguously identify minerals, organic compounds, and biomarkers. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. Recently, we have evaluated a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer that provides high spectral resolution in a compact system without limiting light throughput. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals, including low Raman scattering efficiency olivine and feldspar minerals, in the 100–1260 cm−1 Raman fingerprint region with spatial heterodyne Raman spectrometer using 1.5‐cm‐diameter pulsed 532.078‐nm Nd:YAG laser beam. Copyright © 2017 John Wiley &amp; Sons, Ltd. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. We have used a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer, that provides high spectral resolution in a compact system without limiting light throughout. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.5121</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Biomarkers ; carbonates ; Fourier transforms ; Laser beams ; Lasers ; Mineral exploration ; mineralogy ; Minerals ; Olivine ; Organic compounds ; Raman spectra ; Raman spectroscopy ; Semiconductor lasers ; SHRS ; silicates ; Slits ; spatial heterodyne Raman spectrometer ; Spectral resolution ; Spectrometers ; Spectroscopy ; Spectrum analysis ; Sulfate ; YAG lasers</subject><ispartof>Journal of Raman spectroscopy, 2017-11, Vol.48 (11), p.1613-1617</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3</citedby><cites>FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3</cites><orcidid>0000-0002-5676-7572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Egan, Miles Jacob</creatorcontrib><creatorcontrib>Angel, S. M.</creatorcontrib><creatorcontrib>Sharma, Shiv K.</creatorcontrib><title>Standoff spatial heterodyne Raman spectrometer for mineralogical analysis</title><title>Journal of Raman spectroscopy</title><description>Raman spectroscopy is ideally suited for planetary exploration because of its ability to unambiguously identify minerals, organic compounds, and biomarkers. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. Recently, we have evaluated a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer that provides high spectral resolution in a compact system without limiting light throughput. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals, including low Raman scattering efficiency olivine and feldspar minerals, in the 100–1260 cm−1 Raman fingerprint region with spatial heterodyne Raman spectrometer using 1.5‐cm‐diameter pulsed 532.078‐nm Nd:YAG laser beam. Copyright © 2017 John Wiley &amp; Sons, Ltd. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. We have used a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer, that provides high spectral resolution in a compact system without limiting light throughout. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals.</description><subject>Biomarkers</subject><subject>carbonates</subject><subject>Fourier transforms</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Mineral exploration</subject><subject>mineralogy</subject><subject>Minerals</subject><subject>Olivine</subject><subject>Organic compounds</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Semiconductor lasers</subject><subject>SHRS</subject><subject>silicates</subject><subject>Slits</subject><subject>spatial heterodyne Raman spectrometer</subject><subject>Spectral resolution</subject><subject>Spectrometers</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Sulfate</subject><subject>YAG lasers</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV8CcEvHhJnelmk-xRih-VgtDqeZkks5qSZOtuiuTfm1qvngZmHl6GV4hrhBkCzO-2PswUzvFETBB0FidKqVMxAZllMSR5ei4uQtgCgNYpTsRy01NXOWujsKO-pib65J69q4aOozW11I0HLnvv2sM-ss5Hbd2xp8Z91OXoqaNmCHW4FGeWmsBXf3Mq3h8f3hbP8er1abm4X8WllICxTAqdS1kpXWjJSFxVGStGC1QkZWVLpSAHtlggqdRiJQulJOVUpAQ6JTkVN8fcnXdfew692bq9H58IBnWaZTjXSo_q9qhK70LwbM3O1y35wSCYQ1FmLMocihppfKTfdcPDv868rDe__gfSyGrZ</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Egan, Miles Jacob</creator><creator>Angel, S. M.</creator><creator>Sharma, Shiv K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5676-7572</orcidid></search><sort><creationdate>201711</creationdate><title>Standoff spatial heterodyne Raman spectrometer for mineralogical analysis</title><author>Egan, Miles Jacob ; Angel, S. M. ; Sharma, Shiv K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomarkers</topic><topic>carbonates</topic><topic>Fourier transforms</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Mineral exploration</topic><topic>mineralogy</topic><topic>Minerals</topic><topic>Olivine</topic><topic>Organic compounds</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Semiconductor lasers</topic><topic>SHRS</topic><topic>silicates</topic><topic>Slits</topic><topic>spatial heterodyne Raman spectrometer</topic><topic>Spectral resolution</topic><topic>Spectrometers</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Sulfate</topic><topic>YAG lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egan, Miles Jacob</creatorcontrib><creatorcontrib>Angel, S. M.</creatorcontrib><creatorcontrib>Sharma, Shiv K.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egan, Miles Jacob</au><au>Angel, S. M.</au><au>Sharma, Shiv K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standoff spatial heterodyne Raman spectrometer for mineralogical analysis</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2017-11</date><risdate>2017</risdate><volume>48</volume><issue>11</issue><spage>1613</spage><epage>1617</epage><pages>1613-1617</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Raman spectroscopy is ideally suited for planetary exploration because of its ability to unambiguously identify minerals, organic compounds, and biomarkers. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. Recently, we have evaluated a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer that provides high spectral resolution in a compact system without limiting light throughput. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals, including low Raman scattering efficiency olivine and feldspar minerals, in the 100–1260 cm−1 Raman fingerprint region with spatial heterodyne Raman spectrometer using 1.5‐cm‐diameter pulsed 532.078‐nm Nd:YAG laser beam. Copyright © 2017 John Wiley &amp; Sons, Ltd. Traditionally, Raman spectra were acquired with grating‐based dispersive spectrometers that require tens of micrometer‐sized entrance slits and thus limited light throughput. We have used a new type of Fourier transform Raman spectrometer, the spatial heterodyne Raman spectrometer, that provides high spectral resolution in a compact system without limiting light throughout. In this work, we present time‐resolved Raman spectra of carbonate, sulfate, and silicate minerals.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.5121</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5676-7572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2017-11, Vol.48 (11), p.1613-1617
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_1967712959
source Wiley-Blackwell Read & Publish Collection
subjects Biomarkers
carbonates
Fourier transforms
Laser beams
Lasers
Mineral exploration
mineralogy
Minerals
Olivine
Organic compounds
Raman spectra
Raman spectroscopy
Semiconductor lasers
SHRS
silicates
Slits
spatial heterodyne Raman spectrometer
Spectral resolution
Spectrometers
Spectroscopy
Spectrum analysis
Sulfate
YAG lasers
title Standoff spatial heterodyne Raman spectrometer for mineralogical analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standoff%20spatial%20heterodyne%20Raman%20spectrometer%20for%20mineralogical%20analysis&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Egan,%20Miles%20Jacob&rft.date=2017-11&rft.volume=48&rft.issue=11&rft.spage=1613&rft.epage=1617&rft.pages=1613-1617&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.5121&rft_dat=%3Cproquest_cross%3E1967712959%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3301-34b9833d59b93e1aedd7e5e1f0ab4cdfc55080ef1b1a56f1d3b553a8ab6a096a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967712959&rft_id=info:pmid/&rfr_iscdi=true