Loading…

On the double Roman domination in graphs

A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The w...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2017-12, Vol.232, p.1-7
Main Authors: Abdollahzadeh Ahangar, Hossein, Chellali, Mustapha, Sheikholeslami, Seyed Mahmoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3
cites cdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3
container_end_page 7
container_issue
container_start_page 1
container_title Discrete Applied Mathematics
container_volume 232
creator Abdollahzadeh Ahangar, Hossein
Chellali, Mustapha
Sheikholeslami, Seyed Mahmoud
description A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.
doi_str_mv 10.1016/j.dam.2017.06.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967822838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17303001</els_id><sourcerecordid>1967822838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLeCFy-t-egmXTzJ4hcsLIiCt5AmEzdlm9SkK_jvzbqePQ0vPO_M8CB0SXBNMOE3fW3UUFNMRI15jUlzhArSClpxIcgxKjLDK0ra91N0llKPMSY5Feh67ctpA6UJu24L5UsYlM9hcF5NLvjS-fIjqnGTztGJVdsEF39zht4e7l-XT9Vq_fi8vFtVmvF2qrjlHaWGY9zMuwUzhrKmA9CUKiG0tsZoEGwuKCNG_7LUKq26hRa8s8qyGbo67B1j-NxBmmQfdtHnk5IsuGgpbVmbKXKgdAwpRbByjG5Q8VsSLPdCZC-zELkXIjGXWUju3B46kN__chBl0g68BuMi6Ema4P5p_wBHA2f6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967822838</pqid></control><display><type>article</type><title>On the double Roman domination in graphs</title><source>ScienceDirect Journals</source><creator>Abdollahzadeh Ahangar, Hossein ; Chellali, Mustapha ; Sheikholeslami, Seyed Mahmoud</creator><creatorcontrib>Abdollahzadeh Ahangar, Hossein ; Chellali, Mustapha ; Sheikholeslami, Seyed Mahmoud</creatorcontrib><description>A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.06.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Combinatorics ; Double Roman domination ; Graphs ; Mathematical functions ; Mathematics ; Minimum weight ; Roman [formula omitted]-domination ; Roman domination</subject><ispartof>Discrete Applied Mathematics, 2017-12, Vol.232, p.1-7</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 11, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</citedby><cites>FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Abdollahzadeh Ahangar, Hossein</creatorcontrib><creatorcontrib>Chellali, Mustapha</creatorcontrib><creatorcontrib>Sheikholeslami, Seyed Mahmoud</creatorcontrib><title>On the double Roman domination in graphs</title><title>Discrete Applied Mathematics</title><description>A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.</description><subject>Combinatorics</subject><subject>Double Roman domination</subject><subject>Graphs</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Minimum weight</subject><subject>Roman [formula omitted]-domination</subject><subject>Roman domination</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLeCFy-t-egmXTzJ4hcsLIiCt5AmEzdlm9SkK_jvzbqePQ0vPO_M8CB0SXBNMOE3fW3UUFNMRI15jUlzhArSClpxIcgxKjLDK0ra91N0llKPMSY5Feh67ctpA6UJu24L5UsYlM9hcF5NLvjS-fIjqnGTztGJVdsEF39zht4e7l-XT9Vq_fi8vFtVmvF2qrjlHaWGY9zMuwUzhrKmA9CUKiG0tsZoEGwuKCNG_7LUKq26hRa8s8qyGbo67B1j-NxBmmQfdtHnk5IsuGgpbVmbKXKgdAwpRbByjG5Q8VsSLPdCZC-zELkXIjGXWUju3B46kN__chBl0g68BuMi6Ema4P5p_wBHA2f6</recordid><startdate>20171211</startdate><enddate>20171211</enddate><creator>Abdollahzadeh Ahangar, Hossein</creator><creator>Chellali, Mustapha</creator><creator>Sheikholeslami, Seyed Mahmoud</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171211</creationdate><title>On the double Roman domination in graphs</title><author>Abdollahzadeh Ahangar, Hossein ; Chellali, Mustapha ; Sheikholeslami, Seyed Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Combinatorics</topic><topic>Double Roman domination</topic><topic>Graphs</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Minimum weight</topic><topic>Roman [formula omitted]-domination</topic><topic>Roman domination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdollahzadeh Ahangar, Hossein</creatorcontrib><creatorcontrib>Chellali, Mustapha</creatorcontrib><creatorcontrib>Sheikholeslami, Seyed Mahmoud</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdollahzadeh Ahangar, Hossein</au><au>Chellali, Mustapha</au><au>Sheikholeslami, Seyed Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the double Roman domination in graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-12-11</date><risdate>2017</risdate><volume>232</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.06.014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2017-12, Vol.232, p.1-7
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_1967822838
source ScienceDirect Journals
subjects Combinatorics
Double Roman domination
Graphs
Mathematical functions
Mathematics
Minimum weight
Roman [formula omitted]-domination
Roman domination
title On the double Roman domination in graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20double%20Roman%20domination%20in%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Abdollahzadeh%C2%A0Ahangar,%20Hossein&rft.date=2017-12-11&rft.volume=232&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.06.014&rft_dat=%3Cproquest_cross%3E1967822838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967822838&rft_id=info:pmid/&rfr_iscdi=true