Loading…
On the double Roman domination in graphs
A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The w...
Saved in:
Published in: | Discrete Applied Mathematics 2017-12, Vol.232, p.1-7 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3 |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | Discrete Applied Mathematics |
container_volume | 232 |
creator | Abdollahzadeh Ahangar, Hossein Chellali, Mustapha Sheikholeslami, Seyed Mahmoud |
description | A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided. |
doi_str_mv | 10.1016/j.dam.2017.06.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1967822838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17303001</els_id><sourcerecordid>1967822838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFd_gLeCFy-t-egmXTzJ4hcsLIiCt5AmEzdlm9SkK_jvzbqePQ0vPO_M8CB0SXBNMOE3fW3UUFNMRI15jUlzhArSClpxIcgxKjLDK0ra91N0llKPMSY5Feh67ctpA6UJu24L5UsYlM9hcF5NLvjS-fIjqnGTztGJVdsEF39zht4e7l-XT9Vq_fi8vFtVmvF2qrjlHaWGY9zMuwUzhrKmA9CUKiG0tsZoEGwuKCNG_7LUKq26hRa8s8qyGbo67B1j-NxBmmQfdtHnk5IsuGgpbVmbKXKgdAwpRbByjG5Q8VsSLPdCZC-zELkXIjGXWUju3B46kN__chBl0g68BuMi6Ema4P5p_wBHA2f6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967822838</pqid></control><display><type>article</type><title>On the double Roman domination in graphs</title><source>ScienceDirect Journals</source><creator>Abdollahzadeh Ahangar, Hossein ; Chellali, Mustapha ; Sheikholeslami, Seyed Mahmoud</creator><creatorcontrib>Abdollahzadeh Ahangar, Hossein ; Chellali, Mustapha ; Sheikholeslami, Seyed Mahmoud</creatorcontrib><description>A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.06.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Combinatorics ; Double Roman domination ; Graphs ; Mathematical functions ; Mathematics ; Minimum weight ; Roman [formula omitted]-domination ; Roman domination</subject><ispartof>Discrete Applied Mathematics, 2017-12, Vol.232, p.1-7</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 11, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</citedby><cites>FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Abdollahzadeh Ahangar, Hossein</creatorcontrib><creatorcontrib>Chellali, Mustapha</creatorcontrib><creatorcontrib>Sheikholeslami, Seyed Mahmoud</creatorcontrib><title>On the double Roman domination in graphs</title><title>Discrete Applied Mathematics</title><description>A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.</description><subject>Combinatorics</subject><subject>Double Roman domination</subject><subject>Graphs</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Minimum weight</subject><subject>Roman [formula omitted]-domination</subject><subject>Roman domination</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFd_gLeCFy-t-egmXTzJ4hcsLIiCt5AmEzdlm9SkK_jvzbqePQ0vPO_M8CB0SXBNMOE3fW3UUFNMRI15jUlzhArSClpxIcgxKjLDK0ra91N0llKPMSY5Feh67ctpA6UJu24L5UsYlM9hcF5NLvjS-fIjqnGTztGJVdsEF39zht4e7l-XT9Vq_fi8vFtVmvF2qrjlHaWGY9zMuwUzhrKmA9CUKiG0tsZoEGwuKCNG_7LUKq26hRa8s8qyGbo67B1j-NxBmmQfdtHnk5IsuGgpbVmbKXKgdAwpRbByjG5Q8VsSLPdCZC-zELkXIjGXWUju3B46kN__chBl0g68BuMi6Ema4P5p_wBHA2f6</recordid><startdate>20171211</startdate><enddate>20171211</enddate><creator>Abdollahzadeh Ahangar, Hossein</creator><creator>Chellali, Mustapha</creator><creator>Sheikholeslami, Seyed Mahmoud</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171211</creationdate><title>On the double Roman domination in graphs</title><author>Abdollahzadeh Ahangar, Hossein ; Chellali, Mustapha ; Sheikholeslami, Seyed Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Combinatorics</topic><topic>Double Roman domination</topic><topic>Graphs</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Minimum weight</topic><topic>Roman [formula omitted]-domination</topic><topic>Roman domination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdollahzadeh Ahangar, Hossein</creatorcontrib><creatorcontrib>Chellali, Mustapha</creatorcontrib><creatorcontrib>Sheikholeslami, Seyed Mahmoud</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdollahzadeh Ahangar, Hossein</au><au>Chellali, Mustapha</au><au>Sheikholeslami, Seyed Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the double Roman domination in graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2017-12-11</date><risdate>2017</risdate><volume>232</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.06.014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2017-12, Vol.232, p.1-7 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_1967822838 |
source | ScienceDirect Journals |
subjects | Combinatorics Double Roman domination Graphs Mathematical functions Mathematics Minimum weight Roman [formula omitted]-domination Roman domination |
title | On the double Roman domination in graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20double%20Roman%20domination%20in%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Abdollahzadeh%C2%A0Ahangar,%20Hossein&rft.date=2017-12-11&rft.volume=232&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.06.014&rft_dat=%3Cproquest_cross%3E1967822838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-6f6b22d60045b93dd234beec22a77ccfddce7357231dcf6b222facab9c76bfaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967822838&rft_id=info:pmid/&rfr_iscdi=true |