Loading…

Feature selection for portfolio optimization

Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major reaso...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2017-09, Vol.256 (1), p.21-40
Main Authors: Bjerring, Thomas Trier, Ross, Omri, Weissensteiner, Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893
cites cdi_FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893
container_end_page 40
container_issue 1
container_start_page 21
container_title Annals of operations research
container_volume 256
creator Bjerring, Thomas Trier
Ross, Omri
Weissensteiner, Alex
description Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major reason for these findings. A strand of literature addresses this problem by improving the parameter estimation and/or by relying on more robust portfolio selection methods. Independent of the chosen portfolio selection rule, we propose using feature selection first in order to reduce the asset menu. While most of the diversification benefits are preserved, the parameter estimation problem is alleviated. We conduct out-of-sample back-tests to show that in most cases different well-established portfolio selection rules applied on the reduced asset universe are able to improve alpha relative to different prominent factor models.
doi_str_mv 10.1007/s10479-016-2155-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1968073651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A504693155</galeid><sourcerecordid>A504693155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMoOD9-gHcFb5eZNE3SXo7hVBh4o9chTU9rRtvMpL2Yv96MCm6gBBLIeZ6TjxehO0oWlBD5ECjJZIEJFTilnOP9GZpRLlNcMJafoxlJeYY5Y-QSXYWwJYRQmvMZmq9BD6OHJEALZrCuT2rnk53zQ-1a6xK3G2xnv_ShdIMuat0GuP1Zr9H7-vFt9Yw3r08vq-UGm0ywAacsr6QoGAchGHCRcZlDIaWBsuI6F4YYVrJcEpYKmVUQgZroLJZNaVhesGt0P_Xdefc5QhjU1o2-j0cqWoicSCY4_aUa3YKyfe0Gr01ng1FLTrJ4gfgRkVr8QcVRQWeN66G2cf9EmB8J5RhsDyFOwTYfQ2j0GMIpTifceBeCh1rtvO203ytK1CEaNUWjYjTqEI3aRyednBDZvgF_9L5_pW8_F47B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968073651</pqid></control><display><type>article</type><title>Feature selection for portfolio optimization</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Bjerring, Thomas Trier ; Ross, Omri ; Weissensteiner, Alex</creator><creatorcontrib>Bjerring, Thomas Trier ; Ross, Omri ; Weissensteiner, Alex</creatorcontrib><description>Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major reason for these findings. A strand of literature addresses this problem by improving the parameter estimation and/or by relying on more robust portfolio selection methods. Independent of the chosen portfolio selection rule, we propose using feature selection first in order to reduce the asset menu. While most of the diversification benefits are preserved, the parameter estimation problem is alleviated. We conduct out-of-sample back-tests to show that in most cases different well-established portfolio selection rules applied on the reduced asset universe are able to improve alpha relative to different prominent factor models.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-016-2155-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Astronomical models ; Business and Management ; Combinatorics ; Covariance matrix ; Economic models ; Management science ; Methods ; Operations research ; Operations Research/Decision Theory ; Optimization ; Optimization theory ; Parameter estimation ; Portfolio management ; S.i.: Apmod 2014 ; Theory of Computation ; Universe</subject><ispartof>Annals of operations research, 2017-09, Vol.256 (1), p.21-40</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Annals of Operations Research is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893</citedby><cites>FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1968073651/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1968073651?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Bjerring, Thomas Trier</creatorcontrib><creatorcontrib>Ross, Omri</creatorcontrib><creatorcontrib>Weissensteiner, Alex</creatorcontrib><title>Feature selection for portfolio optimization</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major reason for these findings. A strand of literature addresses this problem by improving the parameter estimation and/or by relying on more robust portfolio selection methods. Independent of the chosen portfolio selection rule, we propose using feature selection first in order to reduce the asset menu. While most of the diversification benefits are preserved, the parameter estimation problem is alleviated. We conduct out-of-sample back-tests to show that in most cases different well-established portfolio selection rules applied on the reduced asset universe are able to improve alpha relative to different prominent factor models.</description><subject>Analysis</subject><subject>Astronomical models</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Covariance matrix</subject><subject>Economic models</subject><subject>Management science</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization theory</subject><subject>Parameter estimation</subject><subject>Portfolio management</subject><subject>S.i.: Apmod 2014</subject><subject>Theory of Computation</subject><subject>Universe</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kV1LwzAUhoMoOD9-gHcFb5eZNE3SXo7hVBh4o9chTU9rRtvMpL2Yv96MCm6gBBLIeZ6TjxehO0oWlBD5ECjJZIEJFTilnOP9GZpRLlNcMJafoxlJeYY5Y-QSXYWwJYRQmvMZmq9BD6OHJEALZrCuT2rnk53zQ-1a6xK3G2xnv_ShdIMuat0GuP1Zr9H7-vFt9Yw3r08vq-UGm0ywAacsr6QoGAchGHCRcZlDIaWBsuI6F4YYVrJcEpYKmVUQgZroLJZNaVhesGt0P_Xdefc5QhjU1o2-j0cqWoicSCY4_aUa3YKyfe0Gr01ng1FLTrJ4gfgRkVr8QcVRQWeN66G2cf9EmB8J5RhsDyFOwTYfQ2j0GMIpTifceBeCh1rtvO203ytK1CEaNUWjYjTqEI3aRyednBDZvgF_9L5_pW8_F47B</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bjerring, Thomas Trier</creator><creator>Ross, Omri</creator><creator>Weissensteiner, Alex</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>Feature selection for portfolio optimization</title><author>Bjerring, Thomas Trier ; Ross, Omri ; Weissensteiner, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Astronomical models</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Covariance matrix</topic><topic>Economic models</topic><topic>Management science</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization theory</topic><topic>Parameter estimation</topic><topic>Portfolio management</topic><topic>S.i.: Apmod 2014</topic><topic>Theory of Computation</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjerring, Thomas Trier</creatorcontrib><creatorcontrib>Ross, Omri</creatorcontrib><creatorcontrib>Weissensteiner, Alex</creatorcontrib><collection>CrossRef</collection><collection>Gale Business Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bjerring, Thomas Trier</au><au>Ross, Omri</au><au>Weissensteiner, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for portfolio optimization</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>256</volume><issue>1</issue><spage>21</spage><epage>40</epage><pages>21-40</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major reason for these findings. A strand of literature addresses this problem by improving the parameter estimation and/or by relying on more robust portfolio selection methods. Independent of the chosen portfolio selection rule, we propose using feature selection first in order to reduce the asset menu. While most of the diversification benefits are preserved, the parameter estimation problem is alleviated. We conduct out-of-sample back-tests to show that in most cases different well-established portfolio selection rules applied on the reduced asset universe are able to improve alpha relative to different prominent factor models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-016-2155-y</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2017-09, Vol.256 (1), p.21-40
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_1968073651
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Link
subjects Analysis
Astronomical models
Business and Management
Combinatorics
Covariance matrix
Economic models
Management science
Methods
Operations research
Operations Research/Decision Theory
Optimization
Optimization theory
Parameter estimation
Portfolio management
S.i.: Apmod 2014
Theory of Computation
Universe
title Feature selection for portfolio optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20portfolio%20optimization&rft.jtitle=Annals%20of%20operations%20research&rft.au=Bjerring,%20Thomas%20Trier&rft.date=2017-09-01&rft.volume=256&rft.issue=1&rft.spage=21&rft.epage=40&rft.pages=21-40&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-016-2155-y&rft_dat=%3Cgale_proqu%3EA504693155%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-238d76935e663e564578e977cebd5a86c0c3b387032674de645f0a4cebcbc3893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968073651&rft_id=info:pmid/&rft_galeid=A504693155&rfr_iscdi=true