Loading…

Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas

A soft chemical synthetic method is used to obtain highly crystalline ZnO flower thin films. Hexagonal wurtzite ZnO structure is observed from X-ray diffraction studies. A large-area jasmine flower-shaped morphology of ZnO is uniformly maintained at all deposition temperatures. The films were charac...

Full description

Saved in:
Bibliographic Details
Published in:Mikrochimica acta (1966) 2017-07, Vol.184 (7), p.2455-2463
Main Authors: Rane, Y. N., Shende, D. A., Raghuwanshi, M. G., Ghule, A. V., Patil, V. L., Patil, P. S., Gosavi, S. R., Deshpande, N. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3
cites cdi_FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3
container_end_page 2463
container_issue 7
container_start_page 2455
container_title Mikrochimica acta (1966)
container_volume 184
creator Rane, Y. N.
Shende, D. A.
Raghuwanshi, M. G.
Ghule, A. V.
Patil, V. L.
Patil, P. S.
Gosavi, S. R.
Deshpande, N. G.
description A soft chemical synthetic method is used to obtain highly crystalline ZnO flower thin films. Hexagonal wurtzite ZnO structure is observed from X-ray diffraction studies. A large-area jasmine flower-shaped morphology of ZnO is uniformly maintained at all deposition temperatures. The films were characterized by energy dispersive X-ray spectroscopy, Raman spectroscopy and field emission scanning electron microscopy. Elemental analysis showed the presence of Zn and O elements without any other impurity. Raman spectroscopy spectroscopy in combination with elemental and resistivity analysis indicated wurtzite ZnO structure and the presence of oxygen vacancies. The films deposited at 338 K were studied with respect to their gas sensing capability at operating temperatures of 473 K. They show a fast response (65 s) and recovery time (54 s) for NO 2 gas at a concentration as low as 10 ppm. Graphical abstract Large area jasmine flower-shaped morphology of ZnO is uniformly maintained for all deposition temperatures using soft chemical synthesis. The maintained flower shaped ZnO thin films at all deposition temperatures is highly sensitive to NO 2 gas.
doi_str_mv 10.1007/s00604-017-2271-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968550005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968550005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwA9gsMRvu9TMeUcVTFR2AhcXKw25TtUmxA6j_nkRhYIHpLud8VzqEnCNcIoC5SgAaJAM0jHODzByQCUqhmQIjDskEgGsmtOHH5CSlNfSg5nJCHp_3TbfyqU60DTRs2i8faVrlO1_Rt2ZBu1Xd0FBvtomGNtI4kF396WnyTaqb5WA9LThd5umUHIV8k_zZz52S19ubl9k9my_uHmbXc1YKKTumUCDnVbDKK1laXmQi01hZy402WGIQHCsvjEEusCiqSlqZKatUVnILRRBTcjHu7mL7_uFT59btR2z6lw6tzpQCAPU_BRlYCzbrKRypMrYpRR_cLtbbPO4dghvCujGs63u5IawzvcNHJ_Vss_Tx1_Kf0jcxanez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968550005</pqid></control><display><type>article</type><title>Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas</title><source>Springer Nature</source><creator>Rane, Y. N. ; Shende, D. A. ; Raghuwanshi, M. G. ; Ghule, A. V. ; Patil, V. L. ; Patil, P. S. ; Gosavi, S. R. ; Deshpande, N. G.</creator><creatorcontrib>Rane, Y. N. ; Shende, D. A. ; Raghuwanshi, M. G. ; Ghule, A. V. ; Patil, V. L. ; Patil, P. S. ; Gosavi, S. R. ; Deshpande, N. G.</creatorcontrib><description>A soft chemical synthetic method is used to obtain highly crystalline ZnO flower thin films. Hexagonal wurtzite ZnO structure is observed from X-ray diffraction studies. A large-area jasmine flower-shaped morphology of ZnO is uniformly maintained at all deposition temperatures. The films were characterized by energy dispersive X-ray spectroscopy, Raman spectroscopy and field emission scanning electron microscopy. Elemental analysis showed the presence of Zn and O elements without any other impurity. Raman spectroscopy spectroscopy in combination with elemental and resistivity analysis indicated wurtzite ZnO structure and the presence of oxygen vacancies. The films deposited at 338 K were studied with respect to their gas sensing capability at operating temperatures of 473 K. They show a fast response (65 s) and recovery time (54 s) for NO 2 gas at a concentration as low as 10 ppm. Graphical abstract Large area jasmine flower-shaped morphology of ZnO is uniformly maintained for all deposition temperatures using soft chemical synthesis. The maintained flower shaped ZnO thin films at all deposition temperatures is highly sensitive to NO 2 gas.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-017-2271-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Crystal structure ; Deposition ; Detection ; Dispersion ; Electrical resistivity ; Electron microscopy ; Emission analysis ; Energy dispersive X ray spectroscopy ; Field emission microscopy ; Gas sensors ; Jasmine ; Lattice vacancies ; Microengineering ; Morphology ; Nanochemistry ; Nanotechnology ; Nitrogen dioxide ; Original Paper ; Oxygen ; Raman spectroscopy ; Recovery time ; Scanning electron microscopy ; Spectroscopic analysis ; Spectrum analysis ; Thin films ; Wurtzite ; X-ray diffraction ; X-ray spectroscopy ; Zinc oxide</subject><ispartof>Mikrochimica acta (1966), 2017-07, Vol.184 (7), p.2455-2463</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Microchimica Acta is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3</citedby><cites>FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rane, Y. N.</creatorcontrib><creatorcontrib>Shende, D. A.</creatorcontrib><creatorcontrib>Raghuwanshi, M. G.</creatorcontrib><creatorcontrib>Ghule, A. V.</creatorcontrib><creatorcontrib>Patil, V. L.</creatorcontrib><creatorcontrib>Patil, P. S.</creatorcontrib><creatorcontrib>Gosavi, S. R.</creatorcontrib><creatorcontrib>Deshpande, N. G.</creatorcontrib><title>Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>A soft chemical synthetic method is used to obtain highly crystalline ZnO flower thin films. Hexagonal wurtzite ZnO structure is observed from X-ray diffraction studies. A large-area jasmine flower-shaped morphology of ZnO is uniformly maintained at all deposition temperatures. The films were characterized by energy dispersive X-ray spectroscopy, Raman spectroscopy and field emission scanning electron microscopy. Elemental analysis showed the presence of Zn and O elements without any other impurity. Raman spectroscopy spectroscopy in combination with elemental and resistivity analysis indicated wurtzite ZnO structure and the presence of oxygen vacancies. The films deposited at 338 K were studied with respect to their gas sensing capability at operating temperatures of 473 K. They show a fast response (65 s) and recovery time (54 s) for NO 2 gas at a concentration as low as 10 ppm. Graphical abstract Large area jasmine flower-shaped morphology of ZnO is uniformly maintained for all deposition temperatures using soft chemical synthesis. The maintained flower shaped ZnO thin films at all deposition temperatures is highly sensitive to NO 2 gas.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Deposition</subject><subject>Detection</subject><subject>Dispersion</subject><subject>Electrical resistivity</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Field emission microscopy</subject><subject>Gas sensors</subject><subject>Jasmine</subject><subject>Lattice vacancies</subject><subject>Microengineering</subject><subject>Morphology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nitrogen dioxide</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Raman spectroscopy</subject><subject>Recovery time</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Wurtzite</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><subject>Zinc oxide</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEqXwA9gsMRvu9TMeUcVTFR2AhcXKw25TtUmxA6j_nkRhYIHpLud8VzqEnCNcIoC5SgAaJAM0jHODzByQCUqhmQIjDskEgGsmtOHH5CSlNfSg5nJCHp_3TbfyqU60DTRs2i8faVrlO1_Rt2ZBu1Xd0FBvtomGNtI4kF396WnyTaqb5WA9LThd5umUHIV8k_zZz52S19ubl9k9my_uHmbXc1YKKTumUCDnVbDKK1laXmQi01hZy402WGIQHCsvjEEusCiqSlqZKatUVnILRRBTcjHu7mL7_uFT59btR2z6lw6tzpQCAPU_BRlYCzbrKRypMrYpRR_cLtbbPO4dghvCujGs63u5IawzvcNHJ_Vss_Tx1_Kf0jcxanez</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Rane, Y. N.</creator><creator>Shende, D. A.</creator><creator>Raghuwanshi, M. G.</creator><creator>Ghule, A. V.</creator><creator>Patil, V. L.</creator><creator>Patil, P. S.</creator><creator>Gosavi, S. R.</creator><creator>Deshpande, N. G.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170701</creationdate><title>Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas</title><author>Rane, Y. N. ; Shende, D. A. ; Raghuwanshi, M. G. ; Ghule, A. V. ; Patil, V. L. ; Patil, P. S. ; Gosavi, S. R. ; Deshpande, N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Deposition</topic><topic>Detection</topic><topic>Dispersion</topic><topic>Electrical resistivity</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Field emission microscopy</topic><topic>Gas sensors</topic><topic>Jasmine</topic><topic>Lattice vacancies</topic><topic>Microengineering</topic><topic>Morphology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nitrogen dioxide</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Raman spectroscopy</topic><topic>Recovery time</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Wurtzite</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rane, Y. N.</creatorcontrib><creatorcontrib>Shende, D. A.</creatorcontrib><creatorcontrib>Raghuwanshi, M. G.</creatorcontrib><creatorcontrib>Ghule, A. V.</creatorcontrib><creatorcontrib>Patil, V. L.</creatorcontrib><creatorcontrib>Patil, P. S.</creatorcontrib><creatorcontrib>Gosavi, S. R.</creatorcontrib><creatorcontrib>Deshpande, N. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rane, Y. N.</au><au>Shende, D. A.</au><au>Raghuwanshi, M. G.</au><au>Ghule, A. V.</au><au>Patil, V. L.</au><au>Patil, P. S.</au><au>Gosavi, S. R.</au><au>Deshpande, N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>184</volume><issue>7</issue><spage>2455</spage><epage>2463</epage><pages>2455-2463</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A soft chemical synthetic method is used to obtain highly crystalline ZnO flower thin films. Hexagonal wurtzite ZnO structure is observed from X-ray diffraction studies. A large-area jasmine flower-shaped morphology of ZnO is uniformly maintained at all deposition temperatures. The films were characterized by energy dispersive X-ray spectroscopy, Raman spectroscopy and field emission scanning electron microscopy. Elemental analysis showed the presence of Zn and O elements without any other impurity. Raman spectroscopy spectroscopy in combination with elemental and resistivity analysis indicated wurtzite ZnO structure and the presence of oxygen vacancies. The films deposited at 338 K were studied with respect to their gas sensing capability at operating temperatures of 473 K. They show a fast response (65 s) and recovery time (54 s) for NO 2 gas at a concentration as low as 10 ppm. Graphical abstract Large area jasmine flower-shaped morphology of ZnO is uniformly maintained for all deposition temperatures using soft chemical synthesis. The maintained flower shaped ZnO thin films at all deposition temperatures is highly sensitive to NO 2 gas.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-017-2271-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2017-07, Vol.184 (7), p.2455-2463
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_journals_1968550005
source Springer Nature
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Crystal structure
Deposition
Detection
Dispersion
Electrical resistivity
Electron microscopy
Emission analysis
Energy dispersive X ray spectroscopy
Field emission microscopy
Gas sensors
Jasmine
Lattice vacancies
Microengineering
Morphology
Nanochemistry
Nanotechnology
Nitrogen dioxide
Original Paper
Oxygen
Raman spectroscopy
Recovery time
Scanning electron microscopy
Spectroscopic analysis
Spectrum analysis
Thin films
Wurtzite
X-ray diffraction
X-ray spectroscopy
Zinc oxide
title Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20flower%20shaped%20ZnO%20thin%20films%20for%20resistive%20sensing%20of%20NO2%20gas&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Rane,%20Y.%20N.&rft.date=2017-07-01&rft.volume=184&rft.issue=7&rft.spage=2455&rft.epage=2463&rft.pages=2455-2463&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-017-2271-7&rft_dat=%3Cproquest_cross%3E1968550005%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-513122df95e54c92b83861d9927671c1f321de3771231bbdd494859558c290bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968550005&rft_id=info:pmid/&rfr_iscdi=true