Loading…
Bioaccumulation‐based silver nanoparticle toxicity in Daphnia magna and maternal impacts
In the present study, we tested whether bioaccumulation in specific tissues of Daphnia magna could explain silver nanoparticle (AgNP) toxicity. Daphnids were exposed to different concentrations of well‐suspended AgNPs and AgNO3. The accumulations of Ag in the whole body, gut, and nongut tissues, as...
Saved in:
Published in: | Environmental toxicology and chemistry 2017-12, Vol.36 (12), p.3359-3366 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, we tested whether bioaccumulation in specific tissues of Daphnia magna could explain silver nanoparticle (AgNP) toxicity. Daphnids were exposed to different concentrations of well‐suspended AgNPs and AgNO3. The accumulations of Ag in the whole body, gut, and nongut tissues, as well as the mortality of daphnids, were recorded over a period of 7 d. Regression analysis showed a higher degree of positive correlation between the concentration of Ag in the nongut tissues than gut tissues and the mortality of daphnids. The results strongly suggested that the toxicity of AgNPs could be better explained in terms of bioaccumulation of AgNPs in the nongut tissues. We further tested the maternal transfer of AgNPs in daphnids into the next generation using radioactive tracers, which were able to detect as low as 1.0 to 3.2% of total accumulated Ag transferred to the neonates. The AgNPs significantly affected the reproduction process during the first 2 broods after exposure, whereas AgNO3 only had significant effects on the first brood. It is possible that AgNPs have longer adverse effects than AgNO3 on the reproduction of Daphnia. The present study identified the sensitive site of AgNP toxic action in daphnids and documented the extent of maternal transfer and the significant influence of AgNPs on the reproduction of daphnids. Environ Toxicol Chem 2017;36:3359–3366. © 2017 SETAC |
---|---|
ISSN: | 0730-7268 1552-8618 |
DOI: | 10.1002/etc.3917 |