Loading…

Regional landslide susceptibility following the Mid NIIGATA prefecture earthquake in 2004 with NEWMARK’S sliding block analysis

This study proposes a calculation method for regional earthquake-induced landslide susceptibility that applies the permanent seismic displacement calculated using Newmark’s sliding block analysis with estimated vertical and horizontal seismic motions. The proposed method takes into account the direc...

Full description

Saved in:
Bibliographic Details
Published in:Landslides 2017-12, Vol.14 (6), p.1887-1899
Main Authors: Shinoda, Masahiro, Miyata, Yoshihisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study proposes a calculation method for regional earthquake-induced landslide susceptibility that applies the permanent seismic displacement calculated using Newmark’s sliding block analysis with estimated vertical and horizontal seismic motions. The proposed method takes into account the direction of slope failure based on the specified slope azimuth. The study results reveal the importance of predominant slope failure direction using a simple infinite slope model subjected to earthquakes. The target area for the earthquake-induced landslide susceptibility analysis constituted a region of more than 2000 km 2 surrounding the epicenter of the Mid Niigata prefecture earthquake in 2004. An earthquake-induced landslide susceptibility map was created based on the proposed method with a specific combination of friction angle and cohesion, and the resulting data were compared to the landslide inventory map produced from aerial photographs following the Mid Niigata prefecture earthquake in 2004. To create the susceptibility map, geomaterial cohesion values for the slope were back-calculated to satisfy the minimum safety factor in the static state. This study also proposes a calculation method for the prediction rate and determines the back-calculated strength parameters of geomaterials. The proposed regional landslide susceptibility map will be useful for understanding potential slope failure locations and magnitude of damage, as well as for planning field investigation and preventing secondary disasters immediately after earthquakes.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-017-0833-8