Loading…
Automatic computation and solution of generalized harmonic balance equations
•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•E...
Saved in:
Published in: | Mechanical systems and signal processing 2018-02, Vol.101, p.309-319 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53 |
container_end_page | 319 |
container_issue | |
container_start_page | 309 |
container_title | Mechanical systems and signal processing |
container_volume | 101 |
creator | Peyton Jones, J.C. Yaser, K.S.A. Stevenson, J. |
description | •Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper.
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper. |
doi_str_mv | 10.1016/j.ymssp.2017.08.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968987655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327017304582</els_id><sourcerecordid>1968987655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwC7hU4tziNG2SHjhME1_SJC5wjpyPQqu22ZIWafx6uo0zJ9vS-9jyQ8gthYwC5fdttu9j3GY5UJGBzICxM7KgUPGU5pSfkwVIKVOWC7gkVzG2AFAVwBdks5pG3-PYmMT4fjuNc-uHBAebRN9Nx8HXyacbXMCu-XE2-cLQ-2EGNHY4GJe43XSk4jW5qLGL7uavLsnH0-P7-iXdvD2_rleb1DBGx9TqwqIQrDJWUyO0Bie4rG2pmSnKEgtJtdEUjUUUlmNuXC64qJEXTFJbsiW5O-3dBr-bXBxV66cwzCcVrbispODlIcVOKRN8jMHVahuaHsNeUVAHbapVR23qoE2BVLO2mXo4UW5-4LtxQUXTuPlN2wRnRmV98y__C5ANeZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968987655</pqid></control><display><type>article</type><title>Automatic computation and solution of generalized harmonic balance equations</title><source>ScienceDirect Freedom Collection</source><creator>Peyton Jones, J.C. ; Yaser, K.S.A. ; Stevenson, J.</creator><creatorcontrib>Peyton Jones, J.C. ; Yaser, K.S.A. ; Stevenson, J.</creatorcontrib><description>•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper.
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2017.08.033</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Analysis ; Continuation methods ; Damping ; Difference equations ; Differential equations ; Harmonic balance ; Harmonic response ; Mathematical analysis ; Nonlinear damper ; Nonlinear equations ; Nonlinear response ; Numerical continuation ; Numerical methods</subject><ispartof>Mechanical systems and signal processing, 2018-02, Vol.101, p.309-319</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</citedby><cites>FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Peyton Jones, J.C.</creatorcontrib><creatorcontrib>Yaser, K.S.A.</creatorcontrib><creatorcontrib>Stevenson, J.</creatorcontrib><title>Automatic computation and solution of generalized harmonic balance equations</title><title>Mechanical systems and signal processing</title><description>•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper.
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Continuation methods</subject><subject>Damping</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Harmonic balance</subject><subject>Harmonic response</subject><subject>Mathematical analysis</subject><subject>Nonlinear damper</subject><subject>Nonlinear equations</subject><subject>Nonlinear response</subject><subject>Numerical continuation</subject><subject>Numerical methods</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwC7hU4tziNG2SHjhME1_SJC5wjpyPQqu22ZIWafx6uo0zJ9vS-9jyQ8gthYwC5fdttu9j3GY5UJGBzICxM7KgUPGU5pSfkwVIKVOWC7gkVzG2AFAVwBdks5pG3-PYmMT4fjuNc-uHBAebRN9Nx8HXyacbXMCu-XE2-cLQ-2EGNHY4GJe43XSk4jW5qLGL7uavLsnH0-P7-iXdvD2_rleb1DBGx9TqwqIQrDJWUyO0Bie4rG2pmSnKEgtJtdEUjUUUlmNuXC64qJEXTFJbsiW5O-3dBr-bXBxV66cwzCcVrbispODlIcVOKRN8jMHVahuaHsNeUVAHbapVR23qoE2BVLO2mXo4UW5-4LtxQUXTuPlN2wRnRmV98y__C5ANeZI</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Peyton Jones, J.C.</creator><creator>Yaser, K.S.A.</creator><creator>Stevenson, J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180215</creationdate><title>Automatic computation and solution of generalized harmonic balance equations</title><author>Peyton Jones, J.C. ; Yaser, K.S.A. ; Stevenson, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Continuation methods</topic><topic>Damping</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Harmonic balance</topic><topic>Harmonic response</topic><topic>Mathematical analysis</topic><topic>Nonlinear damper</topic><topic>Nonlinear equations</topic><topic>Nonlinear response</topic><topic>Numerical continuation</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peyton Jones, J.C.</creatorcontrib><creatorcontrib>Yaser, K.S.A.</creatorcontrib><creatorcontrib>Stevenson, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peyton Jones, J.C.</au><au>Yaser, K.S.A.</au><au>Stevenson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic computation and solution of generalized harmonic balance equations</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>101</volume><spage>309</spage><epage>319</epage><pages>309-319</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper.
Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2017.08.033</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2018-02, Vol.101, p.309-319 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_1968987655 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Analysis Continuation methods Damping Difference equations Differential equations Harmonic balance Harmonic response Mathematical analysis Nonlinear damper Nonlinear equations Nonlinear response Numerical continuation Numerical methods |
title | Automatic computation and solution of generalized harmonic balance equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20computation%20and%20solution%20of%20generalized%20harmonic%20balance%20equations&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Peyton%20Jones,%20J.C.&rft.date=2018-02-15&rft.volume=101&rft.spage=309&rft.epage=319&rft.pages=309-319&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2017.08.033&rft_dat=%3Cproquest_cross%3E1968987655%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968987655&rft_id=info:pmid/&rfr_iscdi=true |