Loading…

Automatic computation and solution of generalized harmonic balance equations

•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•E...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2018-02, Vol.101, p.309-319
Main Authors: Peyton Jones, J.C., Yaser, K.S.A., Stevenson, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53
cites cdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53
container_end_page 319
container_issue
container_start_page 309
container_title Mechanical systems and signal processing
container_volume 101
creator Peyton Jones, J.C.
Yaser, K.S.A.
Stevenson, J.
description •Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper. Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.
doi_str_mv 10.1016/j.ymssp.2017.08.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1968987655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327017304582</els_id><sourcerecordid>1968987655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwC7hU4tziNG2SHjhME1_SJC5wjpyPQqu22ZIWafx6uo0zJ9vS-9jyQ8gthYwC5fdttu9j3GY5UJGBzICxM7KgUPGU5pSfkwVIKVOWC7gkVzG2AFAVwBdks5pG3-PYmMT4fjuNc-uHBAebRN9Nx8HXyacbXMCu-XE2-cLQ-2EGNHY4GJe43XSk4jW5qLGL7uavLsnH0-P7-iXdvD2_rleb1DBGx9TqwqIQrDJWUyO0Bie4rG2pmSnKEgtJtdEUjUUUlmNuXC64qJEXTFJbsiW5O-3dBr-bXBxV66cwzCcVrbispODlIcVOKRN8jMHVahuaHsNeUVAHbapVR23qoE2BVLO2mXo4UW5-4LtxQUXTuPlN2wRnRmV98y__C5ANeZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968987655</pqid></control><display><type>article</type><title>Automatic computation and solution of generalized harmonic balance equations</title><source>ScienceDirect Freedom Collection</source><creator>Peyton Jones, J.C. ; Yaser, K.S.A. ; Stevenson, J.</creator><creatorcontrib>Peyton Jones, J.C. ; Yaser, K.S.A. ; Stevenson, J.</creatorcontrib><description>•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper. Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2017.08.033</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Analysis ; Continuation methods ; Damping ; Difference equations ; Differential equations ; Harmonic balance ; Harmonic response ; Mathematical analysis ; Nonlinear damper ; Nonlinear equations ; Nonlinear response ; Numerical continuation ; Numerical methods</subject><ispartof>Mechanical systems and signal processing, 2018-02, Vol.101, p.309-319</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</citedby><cites>FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Peyton Jones, J.C.</creatorcontrib><creatorcontrib>Yaser, K.S.A.</creatorcontrib><creatorcontrib>Stevenson, J.</creatorcontrib><title>Automatic computation and solution of generalized harmonic balance equations</title><title>Mechanical systems and signal processing</title><description>•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper. Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Continuation methods</subject><subject>Damping</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Harmonic balance</subject><subject>Harmonic response</subject><subject>Mathematical analysis</subject><subject>Nonlinear damper</subject><subject>Nonlinear equations</subject><subject>Nonlinear response</subject><subject>Numerical continuation</subject><subject>Numerical methods</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwC7hU4tziNG2SHjhME1_SJC5wjpyPQqu22ZIWafx6uo0zJ9vS-9jyQ8gthYwC5fdttu9j3GY5UJGBzICxM7KgUPGU5pSfkwVIKVOWC7gkVzG2AFAVwBdks5pG3-PYmMT4fjuNc-uHBAebRN9Nx8HXyacbXMCu-XE2-cLQ-2EGNHY4GJe43XSk4jW5qLGL7uavLsnH0-P7-iXdvD2_rleb1DBGx9TqwqIQrDJWUyO0Bie4rG2pmSnKEgtJtdEUjUUUlmNuXC64qJEXTFJbsiW5O-3dBr-bXBxV66cwzCcVrbispODlIcVOKRN8jMHVahuaHsNeUVAHbapVR23qoE2BVLO2mXo4UW5-4LtxQUXTuPlN2wRnRmV98y__C5ANeZI</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Peyton Jones, J.C.</creator><creator>Yaser, K.S.A.</creator><creator>Stevenson, J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180215</creationdate><title>Automatic computation and solution of generalized harmonic balance equations</title><author>Peyton Jones, J.C. ; Yaser, K.S.A. ; Stevenson, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Continuation methods</topic><topic>Damping</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Harmonic balance</topic><topic>Harmonic response</topic><topic>Mathematical analysis</topic><topic>Nonlinear damper</topic><topic>Nonlinear equations</topic><topic>Nonlinear response</topic><topic>Numerical continuation</topic><topic>Numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peyton Jones, J.C.</creatorcontrib><creatorcontrib>Yaser, K.S.A.</creatorcontrib><creatorcontrib>Stevenson, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peyton Jones, J.C.</au><au>Yaser, K.S.A.</au><au>Stevenson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic computation and solution of generalized harmonic balance equations</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>101</volume><spage>309</spage><epage>319</epage><pages>309-319</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Automatic generation of poly-harmonic balance equations for a broad class of systems.•Automatic solution of harmonic balance equations using continuation methods.•Automatic generation of Jacobian for use with continuation method solution.•Smart initialization for fast numeric solution validation.•Example illustrates previously unreported behavior of a nonlinear automotive damper. Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2017.08.033</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2018-02, Vol.101, p.309-319
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_1968987655
source ScienceDirect Freedom Collection
subjects Algorithms
Analysis
Continuation methods
Damping
Difference equations
Differential equations
Harmonic balance
Harmonic response
Mathematical analysis
Nonlinear damper
Nonlinear equations
Nonlinear response
Numerical continuation
Numerical methods
title Automatic computation and solution of generalized harmonic balance equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20computation%20and%20solution%20of%20generalized%20harmonic%20balance%20equations&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Peyton%20Jones,%20J.C.&rft.date=2018-02-15&rft.volume=101&rft.spage=309&rft.epage=319&rft.pages=309-319&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2017.08.033&rft_dat=%3Cproquest_cross%3E1968987655%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-db4da7739cdb1c7bb0e768fd5b3c455a481bcb1acdaa7d6a2ce2767fa64381d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1968987655&rft_id=info:pmid/&rfr_iscdi=true