Loading…

Elastic, Optoelectronic and Thermoelectric Properties of the Lead-Free Halide Semiconductors Cs2AgBiX 6 (X = Cl, Br): Ab Initio Investigation

We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2018-02, Vol.47 (2), p.1533-1545
Main Authors: Guechi, N., Bouhemadou, A., Bin-Omran, S., Bourzami, A., Louail, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a detailed investigation of the elastic moduli, electronic band structure, density of states, chemical bonding, electron and hole effective masses, optical response functions and thermoelectric properties of the lead-free halide double perovskites Cs2AgBiCl6 and Cs2AgBiBr6 using the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA-PBEsol) and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. Because of the presence of heavy elements in the studied compounds, we include the spin–orbit coupling (SOC) effect. Our calculated structural parameters agree very well with the available experimental and theoretical findings. Single-crystal and polycrystalline elastic constants are predicted using the total-energy versus strain approach. Three-dimensional representations of the crystallographic direction dependence on the shear modulus, Young’s modulus and Poisson’s ratio demonstrate a noticeable elastic anisotropy. The TB-mBJ potential with SOC yields an indirect band gap of 2.44 (1.93) eV for Cs2AgBiCl6 (Cs2AgBiBr6), in good agreement with the existing experimental data. The chemical bonding features are probed via density of states and valence electron density distribution calculations. Optical response functions were predicted from the calculated band structure. Both of the investigated compounds have a significant absorption coefficient (∼ 25×104cm-1) in the visible range of sunlight. The thermoelectric properties of the title compounds were investigated using the FP-LAPW approach in combination with the semi-classical Boltzmann transport theory. The Cs2AgBiCl6 and Cs2AgBiBr6 compounds have a large thermopower S, which makes them potential candidates for thermoelectric applications.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-017-5962-2