Loading…
A novel High-Entropy Alloy-based composite material
This study reports the results of the addition of different reinforcing agents (i.e. nano-diamonds, SiC, Sc2O3, h-BN, c-BN and CN) on the sintering process of the B2-structured Al2CoCrFeNi High-Entropy Alloy. The best candidate for further thermal, electrical and mechanical characterization was chos...
Saved in:
Published in: | Journal of alloys and compounds 2018-01, Vol.730, p.544-551 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study reports the results of the addition of different reinforcing agents (i.e. nano-diamonds, SiC, Sc2O3, h-BN, c-BN and CN) on the sintering process of the B2-structured Al2CoCrFeNi High-Entropy Alloy. The best candidate for further thermal, electrical and mechanical characterization was chosen to be the alloy containing 2 wt% nano-diamonds. The composite was prepared using spark-plasma sintering of pre-alloyed powders and characterized with SEM-EDX, DSC, Laser Flash Analysis (LFA), electrical conductivity and Seebeck coefficient, dilatometry, Young's modulus, Vicker's hardness, 3-points flexural test. It shows unexpectedly low thermal expansion coefficient (from 3×10−6 to 17×10−6 K−1 between RT and 500 °C), high electrical resistivity and Seebeck coefficient and hardness comparable to the sintered blank Al2CoCrFeNi.
•The synthesis of a HEA-based nano-diamond containing composite is reported.•The composite has thermal expansion and conductivity comparable with the HEA.•Electrical resistivity of the composite decreases with increasing temperature. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2017.09.274 |