Loading…

Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method

Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode o...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of materials science 2017-01, Vol.11 (4), p.385-394
Main Author: Ramanathan Saraswathy
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 394
container_issue 4
container_start_page 385
container_title Frontiers of materials science
container_volume 11
creator Ramanathan Saraswathy
description Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.
doi_str_mv 10.1007/s11706-017-0396-6
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1970298516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970298516</sourcerecordid><originalsourceid>FETCH-proquest_journals_19702985163</originalsourceid><addsrcrecordid>eNqNjD1OAzEUhC1EJCLIAeieRG143sTeuEZBdEiEgi4y3heto1178Y-0dNyBG3ISXCBqppkZzadh7FrgrUBs75IQLSqOouW41oqrM7ZsUEuOjdqe_2X5esFWKZ2wSgqpN2LJ0m4gm2OwPY3OmgGsmYx12XhLEI7gjQ8px2JzidRBLLkn78rIuzDVnp2HMLuOYO_F9-fXDM8FZnhq4O0DKgr1NAYay5Bc8DBS7kN3xRZHMyRa_folu3nYvdw_8imG90IpH06hRF-ng9AtNnorhVr_j_oB0HJUUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970298516</pqid></control><display><type>article</type><title>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</title><source>Springer Link</source><creator>Ramanathan Saraswathy</creator><creatorcontrib>Ramanathan Saraswathy</creatorcontrib><description>Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.</description><identifier>ISSN: 2095-025X</identifier><identifier>EISSN: 2095-0268</identifier><identifier>DOI: 10.1007/s11706-017-0396-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Capacitance ; Electrochemical analysis ; Electrodes ; Electrons ; Microemulsions ; Nanoparticles ; Nanostructure ; Ruthenium ; Tin dioxide ; Vibration analysis ; Vibration mode</subject><ispartof>Frontiers of materials science, 2017-01, Vol.11 (4), p.385-394</ispartof><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ramanathan Saraswathy</creatorcontrib><title>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</title><title>Frontiers of materials science</title><description>Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.</description><subject>Capacitance</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Microemulsions</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Ruthenium</subject><subject>Tin dioxide</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><issn>2095-025X</issn><issn>2095-0268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjD1OAzEUhC1EJCLIAeieRG143sTeuEZBdEiEgi4y3heto1178Y-0dNyBG3ISXCBqppkZzadh7FrgrUBs75IQLSqOouW41oqrM7ZsUEuOjdqe_2X5esFWKZ2wSgqpN2LJ0m4gm2OwPY3OmgGsmYx12XhLEI7gjQ8px2JzidRBLLkn78rIuzDVnp2HMLuOYO_F9-fXDM8FZnhq4O0DKgr1NAYay5Bc8DBS7kN3xRZHMyRa_folu3nYvdw_8imG90IpH06hRF-ng9AtNnorhVr_j_oB0HJUUQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ramanathan Saraswathy</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20170101</creationdate><title>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</title><author>Ramanathan Saraswathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19702985163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitance</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Microemulsions</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Ruthenium</topic><topic>Tin dioxide</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanathan Saraswathy</creatorcontrib><jtitle>Frontiers of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanathan Saraswathy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</atitle><jtitle>Frontiers of materials science</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>385</spage><epage>394</epage><pages>385-394</pages><issn>2095-025X</issn><eissn>2095-0268</eissn><abstract>Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11706-017-0396-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-025X
ispartof Frontiers of materials science, 2017-01, Vol.11 (4), p.385-394
issn 2095-025X
2095-0268
language eng
recordid cdi_proquest_journals_1970298516
source Springer Link
subjects Capacitance
Electrochemical analysis
Electrodes
Electrons
Microemulsions
Nanoparticles
Nanostructure
Ruthenium
Tin dioxide
Vibration analysis
Vibration mode
title Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20capacitance%20of%20nanostructured%20ruthenium-doped%20tin%20oxide%20Sn1%E2%80%93x%20Ru%20x%20O2%20by%20the%20microemulsion%20method&rft.jtitle=Frontiers%20of%20materials%20science&rft.au=Ramanathan%20Saraswathy&rft.date=2017-01-01&rft.volume=11&rft.issue=4&rft.spage=385&rft.epage=394&rft.pages=385-394&rft.issn=2095-025X&rft.eissn=2095-0268&rft_id=info:doi/10.1007/s11706-017-0396-6&rft_dat=%3Cproquest%3E1970298516%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_19702985163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970298516&rft_id=info:pmid/&rfr_iscdi=true