Loading…
Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method
Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode o...
Saved in:
Published in: | Frontiers of materials science 2017-01, Vol.11 (4), p.385-394 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 394 |
container_issue | 4 |
container_start_page | 385 |
container_title | Frontiers of materials science |
container_volume | 11 |
creator | Ramanathan Saraswathy |
description | Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors. |
doi_str_mv | 10.1007/s11706-017-0396-6 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1970298516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970298516</sourcerecordid><originalsourceid>FETCH-proquest_journals_19702985163</originalsourceid><addsrcrecordid>eNqNjD1OAzEUhC1EJCLIAeieRG143sTeuEZBdEiEgi4y3heto1178Y-0dNyBG3ISXCBqppkZzadh7FrgrUBs75IQLSqOouW41oqrM7ZsUEuOjdqe_2X5esFWKZ2wSgqpN2LJ0m4gm2OwPY3OmgGsmYx12XhLEI7gjQ8px2JzidRBLLkn78rIuzDVnp2HMLuOYO_F9-fXDM8FZnhq4O0DKgr1NAYay5Bc8DBS7kN3xRZHMyRa_folu3nYvdw_8imG90IpH06hRF-ng9AtNnorhVr_j_oB0HJUUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970298516</pqid></control><display><type>article</type><title>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</title><source>Springer Link</source><creator>Ramanathan Saraswathy</creator><creatorcontrib>Ramanathan Saraswathy</creatorcontrib><description>Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.</description><identifier>ISSN: 2095-025X</identifier><identifier>EISSN: 2095-0268</identifier><identifier>DOI: 10.1007/s11706-017-0396-6</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Capacitance ; Electrochemical analysis ; Electrodes ; Electrons ; Microemulsions ; Nanoparticles ; Nanostructure ; Ruthenium ; Tin dioxide ; Vibration analysis ; Vibration mode</subject><ispartof>Frontiers of materials science, 2017-01, Vol.11 (4), p.385-394</ispartof><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ramanathan Saraswathy</creatorcontrib><title>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</title><title>Frontiers of materials science</title><description>Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.</description><subject>Capacitance</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Microemulsions</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Ruthenium</subject><subject>Tin dioxide</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><issn>2095-025X</issn><issn>2095-0268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjD1OAzEUhC1EJCLIAeieRG143sTeuEZBdEiEgi4y3heto1178Y-0dNyBG3ISXCBqppkZzadh7FrgrUBs75IQLSqOouW41oqrM7ZsUEuOjdqe_2X5esFWKZ2wSgqpN2LJ0m4gm2OwPY3OmgGsmYx12XhLEI7gjQ8px2JzidRBLLkn78rIuzDVnp2HMLuOYO_F9-fXDM8FZnhq4O0DKgr1NAYay5Bc8DBS7kN3xRZHMyRa_folu3nYvdw_8imG90IpH06hRF-ng9AtNnorhVr_j_oB0HJUUQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ramanathan Saraswathy</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20170101</creationdate><title>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</title><author>Ramanathan Saraswathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19702985163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitance</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Microemulsions</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Ruthenium</topic><topic>Tin dioxide</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramanathan Saraswathy</creatorcontrib><jtitle>Frontiers of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramanathan Saraswathy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method</atitle><jtitle>Frontiers of materials science</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>385</spage><epage>394</epage><pages>385-394</pages><issn>2095-025X</issn><eissn>2095-0268</eissn><abstract>Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11706-017-0396-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-025X |
ispartof | Frontiers of materials science, 2017-01, Vol.11 (4), p.385-394 |
issn | 2095-025X 2095-0268 |
language | eng |
recordid | cdi_proquest_journals_1970298516 |
source | Springer Link |
subjects | Capacitance Electrochemical analysis Electrodes Electrons Microemulsions Nanoparticles Nanostructure Ruthenium Tin dioxide Vibration analysis Vibration mode |
title | Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–x Ru x O2 by the microemulsion method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20capacitance%20of%20nanostructured%20ruthenium-doped%20tin%20oxide%20Sn1%E2%80%93x%20Ru%20x%20O2%20by%20the%20microemulsion%20method&rft.jtitle=Frontiers%20of%20materials%20science&rft.au=Ramanathan%20Saraswathy&rft.date=2017-01-01&rft.volume=11&rft.issue=4&rft.spage=385&rft.epage=394&rft.pages=385-394&rft.issn=2095-025X&rft.eissn=2095-0268&rft_id=info:doi/10.1007/s11706-017-0396-6&rft_dat=%3Cproquest%3E1970298516%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_19702985163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970298516&rft_id=info:pmid/&rfr_iscdi=true |