Loading…
A Universal Genus-Two Curve from Siegel Modular Forms
Let [...] be any point in the moduli space of genus-two curves [...] and [...] its field of moduli. We provide a universal equation of a genus-two curve [...] defined over [...], corresponding to [...], where [...] and [...] satisfy a quadratic [...] such that [...] and [...] are given in terms of r...
Saved in:
Published in: | Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2017-11, Vol.13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-495af71d88352c5e6ddfd0579689ba5101314370de78dbf98bdbe4a9e7f373683 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Symmetry, integrability and geometry, methods and applications |
container_volume | 13 |
creator | Malmendier, Andreas Shaska, Tony |
description | Let [...] be any point in the moduli space of genus-two curves [...] and [...] its field of moduli. We provide a universal equation of a genus-two curve [...] defined over [...], corresponding to [...], where [...] and [...] satisfy a quadratic [...] such that [...] and [...] are given in terms of ratios of Siegel modular forms. The curve [...] is defined over the field of moduli [...] if and only if the quadratic has a [...]-rational point [...]. We discover some interesting symmetries of the Weierstrass equation of [...]. This extends previous work of Mestre and others. [ProQuest: [...] denotes formulae omitted.] |
doi_str_mv | 10.3842/SIGMA.2017.089 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970656297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970656297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-495af71d88352c5e6ddfd0579689ba5101314370de78dbf98bdbe4a9e7f373683</originalsourceid><addsrcrecordid>eNpNkDtPwzAAhC0EEqWwMltiTrDj-DVGEU0rtWJoO1tObKNUSVzspoh_T0oZmO6G053uA-AZo5SIPHvdrqpNkWYI8xQJeQNmWGCaIEbl7T9_Dx5iPCCUs5yhGaAF3A_t2YaoO1jZYYzJ7svDcgxnC13wPdy29sN2cOPN2OkAFz708RHcOd1F-_Snc7BfvO3KZbJ-r1ZlsU4agvgpySXVjmMjBKFZQy0zxhlEuWRC1ppihAnOCUfGcmFqJ0VtaptrabkjnDBB5uDl2nsM_nO08aQOfgzDNKmw5NMdlkk-pdJrqgk-xmCdOoa21-FbYaQuaNQvGnVBoyY05AdrFVTd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970656297</pqid></control><display><type>article</type><title>A Universal Genus-Two Curve from Siegel Modular Forms</title><source>Publicly Available Content (ProQuest)</source><creator>Malmendier, Andreas ; Shaska, Tony</creator><creatorcontrib>Malmendier, Andreas ; Shaska, Tony ; Utah State University, USA ; Oakland University, USA</creatorcontrib><description>Let [...] be any point in the moduli space of genus-two curves [...] and [...] its field of moduli. We provide a universal equation of a genus-two curve [...] defined over [...], corresponding to [...], where [...] and [...] satisfy a quadratic [...] such that [...] and [...] are given in terms of ratios of Siegel modular forms. The curve [...] is defined over the field of moduli [...] if and only if the quadratic has a [...]-rational point [...]. We discover some interesting symmetries of the Weierstrass equation of [...]. This extends previous work of Mestre and others. [ProQuest: [...] denotes formulae omitted.]</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><identifier>DOI: 10.3842/SIGMA.2017.089</identifier><language>eng</language><publisher>Kiev: National Academy of Sciences of Ukraine</publisher><subject>Analytic functions</subject><ispartof>Symmetry, integrability and geometry, methods and applications, 2017-11, Vol.13</ispartof><rights>Copyright National Academy of Sciences of Ukraine 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-495af71d88352c5e6ddfd0579689ba5101314370de78dbf98bdbe4a9e7f373683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1970656297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565</link.rule.ids></links><search><creatorcontrib>Malmendier, Andreas</creatorcontrib><creatorcontrib>Shaska, Tony</creatorcontrib><creatorcontrib>Utah State University, USA</creatorcontrib><creatorcontrib>Oakland University, USA</creatorcontrib><title>A Universal Genus-Two Curve from Siegel Modular Forms</title><title>Symmetry, integrability and geometry, methods and applications</title><description>Let [...] be any point in the moduli space of genus-two curves [...] and [...] its field of moduli. We provide a universal equation of a genus-two curve [...] defined over [...], corresponding to [...], where [...] and [...] satisfy a quadratic [...] such that [...] and [...] are given in terms of ratios of Siegel modular forms. The curve [...] is defined over the field of moduli [...] if and only if the quadratic has a [...]-rational point [...]. We discover some interesting symmetries of the Weierstrass equation of [...]. This extends previous work of Mestre and others. [ProQuest: [...] denotes formulae omitted.]</description><subject>Analytic functions</subject><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkDtPwzAAhC0EEqWwMltiTrDj-DVGEU0rtWJoO1tObKNUSVzspoh_T0oZmO6G053uA-AZo5SIPHvdrqpNkWYI8xQJeQNmWGCaIEbl7T9_Dx5iPCCUs5yhGaAF3A_t2YaoO1jZYYzJ7svDcgxnC13wPdy29sN2cOPN2OkAFz708RHcOd1F-_Snc7BfvO3KZbJ-r1ZlsU4agvgpySXVjmMjBKFZQy0zxhlEuWRC1ppihAnOCUfGcmFqJ0VtaptrabkjnDBB5uDl2nsM_nO08aQOfgzDNKmw5NMdlkk-pdJrqgk-xmCdOoa21-FbYaQuaNQvGnVBoyY05AdrFVTd</recordid><startdate>20171130</startdate><enddate>20171130</enddate><creator>Malmendier, Andreas</creator><creator>Shaska, Tony</creator><general>National Academy of Sciences of Ukraine</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20171130</creationdate><title>A Universal Genus-Two Curve from Siegel Modular Forms</title><author>Malmendier, Andreas ; Shaska, Tony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-495af71d88352c5e6ddfd0579689ba5101314370de78dbf98bdbe4a9e7f373683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytic functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malmendier, Andreas</creatorcontrib><creatorcontrib>Shaska, Tony</creatorcontrib><creatorcontrib>Utah State University, USA</creatorcontrib><creatorcontrib>Oakland University, USA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malmendier, Andreas</au><au>Shaska, Tony</au><aucorp>Utah State University, USA</aucorp><aucorp>Oakland University, USA</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Genus-Two Curve from Siegel Modular Forms</atitle><jtitle>Symmetry, integrability and geometry, methods and applications</jtitle><date>2017-11-30</date><risdate>2017</risdate><volume>13</volume><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>Let [...] be any point in the moduli space of genus-two curves [...] and [...] its field of moduli. We provide a universal equation of a genus-two curve [...] defined over [...], corresponding to [...], where [...] and [...] satisfy a quadratic [...] such that [...] and [...] are given in terms of ratios of Siegel modular forms. The curve [...] is defined over the field of moduli [...] if and only if the quadratic has a [...]-rational point [...]. We discover some interesting symmetries of the Weierstrass equation of [...]. This extends previous work of Mestre and others. [ProQuest: [...] denotes formulae omitted.]</abstract><cop>Kiev</cop><pub>National Academy of Sciences of Ukraine</pub><doi>10.3842/SIGMA.2017.089</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | Symmetry, integrability and geometry, methods and applications, 2017-11, Vol.13 |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_proquest_journals_1970656297 |
source | Publicly Available Content (ProQuest) |
subjects | Analytic functions |
title | A Universal Genus-Two Curve from Siegel Modular Forms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Genus-Two%20Curve%20from%20Siegel%20Modular%20Forms&rft.jtitle=Symmetry,%20integrability%20and%20geometry,%20methods%20and%20applications&rft.au=Malmendier,%20Andreas&rft.aucorp=Utah%20State%20University,%20USA&rft.date=2017-11-30&rft.volume=13&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/10.3842/SIGMA.2017.089&rft_dat=%3Cproquest_cross%3E1970656297%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-495af71d88352c5e6ddfd0579689ba5101314370de78dbf98bdbe4a9e7f373683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970656297&rft_id=info:pmid/&rfr_iscdi=true |