Loading…

Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring

We present a model-order-reduction approach to simulation-based classification, with particular application to structural health monitoring. The approach exploits (1) synthetic results obtained by repeated solution of a parametrized mathematical model for different values of the parameters, (2) mach...

Full description

Saved in:
Bibliographic Details
Published in:Archives of computational methods in engineering 2018-01, Vol.25 (1), p.23-45
Main Authors: Taddei, T., Penn, J. D., Yano, M., Patera, A. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a model-order-reduction approach to simulation-based classification, with particular application to structural health monitoring. The approach exploits (1) synthetic results obtained by repeated solution of a parametrized mathematical model for different values of the parameters, (2) machine-learning algorithms to generate a classifier that monitors the damage state of the system, and (3) a reduced basis method to reduce the computational burden associated with the model evaluations. Furthermore, we propose a mathematical formulation which integrates the partial differential equation model within the classification framework and clarifies the influence of model error on classification performance. We illustrate our approach and we demonstrate its effectiveness through the vehicle of a particular physical companion experiment, a harmonically excited microtruss.
ISSN:1134-3060
1886-1784
DOI:10.1007/s11831-016-9185-0