Loading…

Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane

Thermogravimetric analysis (TGA), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and High-resolution transmission electron microscopy (HRTEM) techniques were used to characterize soot gathered from a conventional automotive diesel engine fueled by ul...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2017-12, Vol.125, p.516-529
Main Authors: Soriano, José A., Agudelo, John R., López, Andrés F., Armas, Octavio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3
cites cdi_FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3
container_end_page 529
container_issue
container_start_page 516
container_title Carbon (New York)
container_volume 125
creator Soriano, José A.
Agudelo, John R.
López, Andrés F.
Armas, Octavio
description Thermogravimetric analysis (TGA), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and High-resolution transmission electron microscopy (HRTEM) techniques were used to characterize soot gathered from a conventional automotive diesel engine fueled by ultra-low sulfur diesel, gas-to-liquid (GTL), biodiesel, and a diesel fuel derived from sugar cane named farnesane. Soot oxidation reactivity, volatile organic fraction, and active surface area (determined with TGA) followed the order: biodiesel >> GTL > farnesane ≅ diesel. Among all soot samples, biodiesel exhibited the highest FTIR absorption peaks for oxygenated and aliphatic functional groups. The degree of disorder of graphene layers (RS analysis bands), fringe interspace distance (∼1.5 nm with XRD, and ∼0.46 nm with HRTEM), fringe length (∼2.5–4 nm with XRD, and ∼0.9 nm with HRTEM), median fringe tortuosity (∼1.1), mean primary particles diameter (∼25 nm), and fractal dimension (∼2.3) were similar for all soot samples. HRTEM images revealed a marked difference in the burning pattern for biodiesel soot in comparison with the other soot samples. Given the results of this work, under the specific engine test condition and engine configuration, farnesane fuel seems so far to be a promising renewable paraffinic fuel for current diesel engines. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.09.090
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1970948709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862231730965X</els_id><sourcerecordid>1970948709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWH_ewIuA11uT3W02eyNI8Q8Eb_Q6ZJOJprSJTrLF-gQ-tinrtTBkJuQ7Z8gh5IKzOWdcXK3mRuMQw7xmvJuzvhQ7IDMuu6ZqZM8PyYwxJitR180xOUlpVa6t5O2M_Dx_eauzj4EiaJP91ucd1cHSoENMGUeTR9Rrat41lndA_z3h0dH8DjTFmKmJGx_eqMO4oU5jgKQD0Ire0BC3sKbWQyrNjfu5WGzBTnAa3zRSU-gzcuT0OsH5Xz8lr3e3L8uH6un5_nF581SZpuO5sswtutbZRjQdOC4NW0jR1fWwALHgjdEGul6zobXC1UID9FYMwtnaycFJ7ppTcjn5fmD8HCFltYojhrJS8b5jfSvLUah2ogzGlBCc-kC_0bhTnKl95mqlpszVPnPF-lKsyK4nGZQfbD2gSsZDMGA9gsnKRv-_wS-hYo-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970948709</pqid></control><display><type>article</type><title>Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane</title><source>ScienceDirect Journals</source><creator>Soriano, José A. ; Agudelo, John R. ; López, Andrés F. ; Armas, Octavio</creator><creatorcontrib>Soriano, José A. ; Agudelo, John R. ; López, Andrés F. ; Armas, Octavio</creatorcontrib><description>Thermogravimetric analysis (TGA), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and High-resolution transmission electron microscopy (HRTEM) techniques were used to characterize soot gathered from a conventional automotive diesel engine fueled by ultra-low sulfur diesel, gas-to-liquid (GTL), biodiesel, and a diesel fuel derived from sugar cane named farnesane. Soot oxidation reactivity, volatile organic fraction, and active surface area (determined with TGA) followed the order: biodiesel &gt;&gt; GTL &gt; farnesane ≅ diesel. Among all soot samples, biodiesel exhibited the highest FTIR absorption peaks for oxygenated and aliphatic functional groups. The degree of disorder of graphene layers (RS analysis bands), fringe interspace distance (∼1.5 nm with XRD, and ∼0.46 nm with HRTEM), fringe length (∼2.5–4 nm with XRD, and ∼0.9 nm with HRTEM), median fringe tortuosity (∼1.1), mean primary particles diameter (∼25 nm), and fractal dimension (∼2.3) were similar for all soot samples. HRTEM images revealed a marked difference in the burning pattern for biodiesel soot in comparison with the other soot samples. Given the results of this work, under the specific engine test condition and engine configuration, farnesane fuel seems so far to be a promising renewable paraffinic fuel for current diesel engines. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.09.090</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aliphatic compounds ; Automotive engines ; Automotive fuels ; Biodiesel fuels ; Diesel engines ; Diesel fuels ; Diffraction ; Electron microscopy ; Fourier transforms ; Functional groups ; Infrared analysis ; Infrared spectroscopy ; Microscopy ; Oxidation ; Soot ; Sugarcane ; Thermogravimetric analysis ; Tortuosity ; X-ray diffraction</subject><ispartof>Carbon (New York), 2017-12, Vol.125, p.516-529</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3</citedby><cites>FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3</cites><orcidid>0000-0002-3675-1522 ; 0000-0003-1304-9375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soriano, José A.</creatorcontrib><creatorcontrib>Agudelo, John R.</creatorcontrib><creatorcontrib>López, Andrés F.</creatorcontrib><creatorcontrib>Armas, Octavio</creatorcontrib><title>Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane</title><title>Carbon (New York)</title><description>Thermogravimetric analysis (TGA), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and High-resolution transmission electron microscopy (HRTEM) techniques were used to characterize soot gathered from a conventional automotive diesel engine fueled by ultra-low sulfur diesel, gas-to-liquid (GTL), biodiesel, and a diesel fuel derived from sugar cane named farnesane. Soot oxidation reactivity, volatile organic fraction, and active surface area (determined with TGA) followed the order: biodiesel &gt;&gt; GTL &gt; farnesane ≅ diesel. Among all soot samples, biodiesel exhibited the highest FTIR absorption peaks for oxygenated and aliphatic functional groups. The degree of disorder of graphene layers (RS analysis bands), fringe interspace distance (∼1.5 nm with XRD, and ∼0.46 nm with HRTEM), fringe length (∼2.5–4 nm with XRD, and ∼0.9 nm with HRTEM), median fringe tortuosity (∼1.1), mean primary particles diameter (∼25 nm), and fractal dimension (∼2.3) were similar for all soot samples. HRTEM images revealed a marked difference in the burning pattern for biodiesel soot in comparison with the other soot samples. Given the results of this work, under the specific engine test condition and engine configuration, farnesane fuel seems so far to be a promising renewable paraffinic fuel for current diesel engines. [Display omitted]</description><subject>Aliphatic compounds</subject><subject>Automotive engines</subject><subject>Automotive fuels</subject><subject>Biodiesel fuels</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Diffraction</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Microscopy</subject><subject>Oxidation</subject><subject>Soot</subject><subject>Sugarcane</subject><subject>Thermogravimetric analysis</subject><subject>Tortuosity</subject><subject>X-ray diffraction</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWH_ewIuA11uT3W02eyNI8Q8Eb_Q6ZJOJprSJTrLF-gQ-tinrtTBkJuQ7Z8gh5IKzOWdcXK3mRuMQw7xmvJuzvhQ7IDMuu6ZqZM8PyYwxJitR180xOUlpVa6t5O2M_Dx_eauzj4EiaJP91ucd1cHSoENMGUeTR9Rrat41lndA_z3h0dH8DjTFmKmJGx_eqMO4oU5jgKQD0Ire0BC3sKbWQyrNjfu5WGzBTnAa3zRSU-gzcuT0OsH5Xz8lr3e3L8uH6un5_nF581SZpuO5sswtutbZRjQdOC4NW0jR1fWwALHgjdEGul6zobXC1UID9FYMwtnaycFJ7ppTcjn5fmD8HCFltYojhrJS8b5jfSvLUah2ogzGlBCc-kC_0bhTnKl95mqlpszVPnPF-lKsyK4nGZQfbD2gSsZDMGA9gsnKRv-_wS-hYo-w</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Soriano, José A.</creator><creator>Agudelo, John R.</creator><creator>López, Andrés F.</creator><creator>Armas, Octavio</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3675-1522</orcidid><orcidid>https://orcid.org/0000-0003-1304-9375</orcidid></search><sort><creationdate>20171201</creationdate><title>Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane</title><author>Soriano, José A. ; Agudelo, John R. ; López, Andrés F. ; Armas, Octavio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliphatic compounds</topic><topic>Automotive engines</topic><topic>Automotive fuels</topic><topic>Biodiesel fuels</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Diffraction</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Microscopy</topic><topic>Oxidation</topic><topic>Soot</topic><topic>Sugarcane</topic><topic>Thermogravimetric analysis</topic><topic>Tortuosity</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soriano, José A.</creatorcontrib><creatorcontrib>Agudelo, John R.</creatorcontrib><creatorcontrib>López, Andrés F.</creatorcontrib><creatorcontrib>Armas, Octavio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soriano, José A.</au><au>Agudelo, John R.</au><au>López, Andrés F.</au><au>Armas, Octavio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane</atitle><jtitle>Carbon (New York)</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>125</volume><spage>516</spage><epage>529</epage><pages>516-529</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Thermogravimetric analysis (TGA), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS) and High-resolution transmission electron microscopy (HRTEM) techniques were used to characterize soot gathered from a conventional automotive diesel engine fueled by ultra-low sulfur diesel, gas-to-liquid (GTL), biodiesel, and a diesel fuel derived from sugar cane named farnesane. Soot oxidation reactivity, volatile organic fraction, and active surface area (determined with TGA) followed the order: biodiesel &gt;&gt; GTL &gt; farnesane ≅ diesel. Among all soot samples, biodiesel exhibited the highest FTIR absorption peaks for oxygenated and aliphatic functional groups. The degree of disorder of graphene layers (RS analysis bands), fringe interspace distance (∼1.5 nm with XRD, and ∼0.46 nm with HRTEM), fringe length (∼2.5–4 nm with XRD, and ∼0.9 nm with HRTEM), median fringe tortuosity (∼1.1), mean primary particles diameter (∼25 nm), and fractal dimension (∼2.3) were similar for all soot samples. HRTEM images revealed a marked difference in the burning pattern for biodiesel soot in comparison with the other soot samples. Given the results of this work, under the specific engine test condition and engine configuration, farnesane fuel seems so far to be a promising renewable paraffinic fuel for current diesel engines. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.09.090</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3675-1522</orcidid><orcidid>https://orcid.org/0000-0003-1304-9375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-12, Vol.125, p.516-529
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1970948709
source ScienceDirect Journals
subjects Aliphatic compounds
Automotive engines
Automotive fuels
Biodiesel fuels
Diesel engines
Diesel fuels
Diffraction
Electron microscopy
Fourier transforms
Functional groups
Infrared analysis
Infrared spectroscopy
Microscopy
Oxidation
Soot
Sugarcane
Thermogravimetric analysis
Tortuosity
X-ray diffraction
title Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20reactivity%20and%20nanostructural%20characterization%20of%20the%20soot%20coming%20from%20farnesane%20-%20A%20novel%20diesel%20fuel%20derived%20from%20sugar%20cane&rft.jtitle=Carbon%20(New%20York)&rft.au=Soriano,%20Jos%C3%A9%20A.&rft.date=2017-12-01&rft.volume=125&rft.spage=516&rft.epage=529&rft.pages=516-529&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.09.090&rft_dat=%3Cproquest_cross%3E1970948709%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-d0f574fd3637ef18c0586722b5e6513cace79a0b4d6f26aee9d6b6fd2f8bf81f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970948709&rft_id=info:pmid/&rfr_iscdi=true