Loading…

Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform

The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydroinformatics 2017-11, Vol.19 (6), p.911-919
Main Authors: Roy, Tirthankar, Serrat-Capdevila, Aleix, Valdes, Juan, Durcik, Matej, Gupta, Hoshin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2017.111