Loading…
Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform
The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and...
Saved in:
Published in: | Journal of hydroinformatics 2017-11, Vol.19 (6), p.911-919 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323 |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323 |
container_end_page | 919 |
container_issue | 6 |
container_start_page | 911 |
container_title | Journal of hydroinformatics |
container_volume | 19 |
creator | Roy, Tirthankar Serrat-Capdevila, Aleix Valdes, Juan Durcik, Matej Gupta, Hoshin |
description | The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models. |
doi_str_mv | 10.2166/hydro.2017.111 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1971725885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1971725885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</originalsourceid><addsrcrecordid>eNotUDtPwzAQthBIlMLKbIk5Iec4cTqi8pQqscBsXWK7pHLiYDtCFX8et3S6-x66x0fILRQ5g7q-_9or73JWgMgB4IwsgNdVBqLk58eeZwI4XJKrEHZFwaBsYEF-H3XotyPFUdF-mKwe9Bgx9m6kziSWukn7I0ZLh9nGfnBKn9rJOzV3kXqNNkuKpolpse1tH2Lf0RCTMhjrfqhxXneY2HFLJ4sx4eGaXBi0Qd-c6pJ8Pj99rF-zzfvL2_phk3VlIWJWNUWNCKpUQjHUYOoVdmzVGdVyhelVblAB19xUjNegOUdIGijRtEqVrFySu_-56brvWYcod2726aEgYSVAsKppquTK_12ddyF4beTk-wH9XkIhDwHLY8DyELBMW8s_FC9z_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971725885</pqid></control><display><type>article</type><title>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</title><source>Alma/SFX Local Collection</source><creator>Roy, Tirthankar ; Serrat-Capdevila, Aleix ; Valdes, Juan ; Durcik, Matej ; Gupta, Hoshin</creator><creatorcontrib>Roy, Tirthankar ; Serrat-Capdevila, Aleix ; Valdes, Juan ; Durcik, Matej ; Gupta, Hoshin</creatorcontrib><description>The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2017.111</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Bias ; Calibration ; Design ; Forecasting ; General circulation models ; Hydrologic models ; Hydrology ; Hypotheses ; Lead time ; Modular design ; Monitoring ; Precipitation ; Rain ; Real time ; River basins ; Rivers ; Satellites ; Stream discharge ; Stream flow ; Streamflow forecasting ; Weather forecasting</subject><ispartof>Journal of hydroinformatics, 2017-11, Vol.19 (6), p.911-919</ispartof><rights>Copyright IWA Publishing Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</citedby><cites>FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Tirthankar</creatorcontrib><creatorcontrib>Serrat-Capdevila, Aleix</creatorcontrib><creatorcontrib>Valdes, Juan</creatorcontrib><creatorcontrib>Durcik, Matej</creatorcontrib><creatorcontrib>Gupta, Hoshin</creatorcontrib><title>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</title><title>Journal of hydroinformatics</title><description>The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.</description><subject>Bias</subject><subject>Calibration</subject><subject>Design</subject><subject>Forecasting</subject><subject>General circulation models</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hypotheses</subject><subject>Lead time</subject><subject>Modular design</subject><subject>Monitoring</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Real time</subject><subject>River basins</subject><subject>Rivers</subject><subject>Satellites</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow forecasting</subject><subject>Weather forecasting</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUDtPwzAQthBIlMLKbIk5Iec4cTqi8pQqscBsXWK7pHLiYDtCFX8et3S6-x66x0fILRQ5g7q-_9or73JWgMgB4IwsgNdVBqLk58eeZwI4XJKrEHZFwaBsYEF-H3XotyPFUdF-mKwe9Bgx9m6kziSWukn7I0ZLh9nGfnBKn9rJOzV3kXqNNkuKpolpse1tH2Lf0RCTMhjrfqhxXneY2HFLJ4sx4eGaXBi0Qd-c6pJ8Pj99rF-zzfvL2_phk3VlIWJWNUWNCKpUQjHUYOoVdmzVGdVyhelVblAB19xUjNegOUdIGijRtEqVrFySu_-56brvWYcod2726aEgYSVAsKppquTK_12ddyF4beTk-wH9XkIhDwHLY8DyELBMW8s_FC9z_g</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Roy, Tirthankar</creator><creator>Serrat-Capdevila, Aleix</creator><creator>Valdes, Juan</creator><creator>Durcik, Matej</creator><creator>Gupta, Hoshin</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20171101</creationdate><title>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</title><author>Roy, Tirthankar ; Serrat-Capdevila, Aleix ; Valdes, Juan ; Durcik, Matej ; Gupta, Hoshin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bias</topic><topic>Calibration</topic><topic>Design</topic><topic>Forecasting</topic><topic>General circulation models</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hypotheses</topic><topic>Lead time</topic><topic>Modular design</topic><topic>Monitoring</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Real time</topic><topic>River basins</topic><topic>Rivers</topic><topic>Satellites</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow forecasting</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Tirthankar</creatorcontrib><creatorcontrib>Serrat-Capdevila, Aleix</creatorcontrib><creatorcontrib>Valdes, Juan</creatorcontrib><creatorcontrib>Durcik, Matej</creatorcontrib><creatorcontrib>Gupta, Hoshin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Tirthankar</au><au>Serrat-Capdevila, Aleix</au><au>Valdes, Juan</au><au>Durcik, Matej</au><au>Gupta, Hoshin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>911</spage><epage>919</epage><pages>911-919</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2017.111</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-7141 |
ispartof | Journal of hydroinformatics, 2017-11, Vol.19 (6), p.911-919 |
issn | 1464-7141 1465-1734 |
language | eng |
recordid | cdi_proquest_journals_1971725885 |
source | Alma/SFX Local Collection |
subjects | Bias Calibration Design Forecasting General circulation models Hydrologic models Hydrology Hypotheses Lead time Modular design Monitoring Precipitation Rain Real time River basins Rivers Satellites Stream discharge Stream flow Streamflow forecasting Weather forecasting |
title | Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20an%20operational%20multimodel%20multiproduct%20real-time%20probabilistic%20streamflow%20forecasting%20platform&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Roy,%20Tirthankar&rft.date=2017-11-01&rft.volume=19&rft.issue=6&rft.spage=911&rft.epage=919&rft.pages=911-919&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2017.111&rft_dat=%3Cproquest_cross%3E1971725885%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1971725885&rft_id=info:pmid/&rfr_iscdi=true |