Loading…

Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform

The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydroinformatics 2017-11, Vol.19 (6), p.911-919
Main Authors: Roy, Tirthankar, Serrat-Capdevila, Aleix, Valdes, Juan, Durcik, Matej, Gupta, Hoshin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323
cites cdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323
container_end_page 919
container_issue 6
container_start_page 911
container_title Journal of hydroinformatics
container_volume 19
creator Roy, Tirthankar
Serrat-Capdevila, Aleix
Valdes, Juan
Durcik, Matej
Gupta, Hoshin
description The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.
doi_str_mv 10.2166/hydro.2017.111
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1971725885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1971725885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</originalsourceid><addsrcrecordid>eNotUDtPwzAQthBIlMLKbIk5Iec4cTqi8pQqscBsXWK7pHLiYDtCFX8et3S6-x66x0fILRQ5g7q-_9or73JWgMgB4IwsgNdVBqLk58eeZwI4XJKrEHZFwaBsYEF-H3XotyPFUdF-mKwe9Bgx9m6kziSWukn7I0ZLh9nGfnBKn9rJOzV3kXqNNkuKpolpse1tH2Lf0RCTMhjrfqhxXneY2HFLJ4sx4eGaXBi0Qd-c6pJ8Pj99rF-zzfvL2_phk3VlIWJWNUWNCKpUQjHUYOoVdmzVGdVyhelVblAB19xUjNegOUdIGijRtEqVrFySu_-56brvWYcod2726aEgYSVAsKppquTK_12ddyF4beTk-wH9XkIhDwHLY8DyELBMW8s_FC9z_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971725885</pqid></control><display><type>article</type><title>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</title><source>Alma/SFX Local Collection</source><creator>Roy, Tirthankar ; Serrat-Capdevila, Aleix ; Valdes, Juan ; Durcik, Matej ; Gupta, Hoshin</creator><creatorcontrib>Roy, Tirthankar ; Serrat-Capdevila, Aleix ; Valdes, Juan ; Durcik, Matej ; Gupta, Hoshin</creatorcontrib><description>The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2017.111</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Bias ; Calibration ; Design ; Forecasting ; General circulation models ; Hydrologic models ; Hydrology ; Hypotheses ; Lead time ; Modular design ; Monitoring ; Precipitation ; Rain ; Real time ; River basins ; Rivers ; Satellites ; Stream discharge ; Stream flow ; Streamflow forecasting ; Weather forecasting</subject><ispartof>Journal of hydroinformatics, 2017-11, Vol.19 (6), p.911-919</ispartof><rights>Copyright IWA Publishing Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</citedby><cites>FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Tirthankar</creatorcontrib><creatorcontrib>Serrat-Capdevila, Aleix</creatorcontrib><creatorcontrib>Valdes, Juan</creatorcontrib><creatorcontrib>Durcik, Matej</creatorcontrib><creatorcontrib>Gupta, Hoshin</creatorcontrib><title>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</title><title>Journal of hydroinformatics</title><description>The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.</description><subject>Bias</subject><subject>Calibration</subject><subject>Design</subject><subject>Forecasting</subject><subject>General circulation models</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hypotheses</subject><subject>Lead time</subject><subject>Modular design</subject><subject>Monitoring</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Real time</subject><subject>River basins</subject><subject>Rivers</subject><subject>Satellites</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow forecasting</subject><subject>Weather forecasting</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUDtPwzAQthBIlMLKbIk5Iec4cTqi8pQqscBsXWK7pHLiYDtCFX8et3S6-x66x0fILRQ5g7q-_9or73JWgMgB4IwsgNdVBqLk58eeZwI4XJKrEHZFwaBsYEF-H3XotyPFUdF-mKwe9Bgx9m6kziSWukn7I0ZLh9nGfnBKn9rJOzV3kXqNNkuKpolpse1tH2Lf0RCTMhjrfqhxXneY2HFLJ4sx4eGaXBi0Qd-c6pJ8Pj99rF-zzfvL2_phk3VlIWJWNUWNCKpUQjHUYOoVdmzVGdVyhelVblAB19xUjNegOUdIGijRtEqVrFySu_-56brvWYcod2726aEgYSVAsKppquTK_12ddyF4beTk-wH9XkIhDwHLY8DyELBMW8s_FC9z_g</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Roy, Tirthankar</creator><creator>Serrat-Capdevila, Aleix</creator><creator>Valdes, Juan</creator><creator>Durcik, Matej</creator><creator>Gupta, Hoshin</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20171101</creationdate><title>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</title><author>Roy, Tirthankar ; Serrat-Capdevila, Aleix ; Valdes, Juan ; Durcik, Matej ; Gupta, Hoshin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bias</topic><topic>Calibration</topic><topic>Design</topic><topic>Forecasting</topic><topic>General circulation models</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hypotheses</topic><topic>Lead time</topic><topic>Modular design</topic><topic>Monitoring</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Real time</topic><topic>River basins</topic><topic>Rivers</topic><topic>Satellites</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow forecasting</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Tirthankar</creatorcontrib><creatorcontrib>Serrat-Capdevila, Aleix</creatorcontrib><creatorcontrib>Valdes, Juan</creatorcontrib><creatorcontrib>Durcik, Matej</creatorcontrib><creatorcontrib>Gupta, Hoshin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Tirthankar</au><au>Serrat-Capdevila, Aleix</au><au>Valdes, Juan</au><au>Durcik, Matej</au><au>Gupta, Hoshin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>911</spage><epage>919</epage><pages>911-919</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>The task of real-time streamflow monitoring and forecasting is particularly challenging for ungauged or sparsely gauged river basins, and largely relies upon satellite-based estimates of precipitation. We present the design and implementation of a state-of-the-art real-time streamflow monitoring and forecasting platform that integrates information provided by cutting-edge satellite precipitation products (SPPs), numerical precipitation forecasts, and multiple hydrologic models, to generate probabilistic streamflow forecasts that have an effective lead time of 9 days. The modular design of the platform enables adding/removing any model/product as may be appropriate. The SPPs are bias-corrected in real-time, and the model-generated streamflow forecasts are further bias-corrected and merged, to produce probabilistic forecasts that are computed via several model averaging techniques. The platform is currently operational in multiple river basins in Africa, and can also be adapted to any new basin by incorporating some basin-specific changes and recalibration of the hydrologic models.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2017.111</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7141
ispartof Journal of hydroinformatics, 2017-11, Vol.19 (6), p.911-919
issn 1464-7141
1465-1734
language eng
recordid cdi_proquest_journals_1971725885
source Alma/SFX Local Collection
subjects Bias
Calibration
Design
Forecasting
General circulation models
Hydrologic models
Hydrology
Hypotheses
Lead time
Modular design
Monitoring
Precipitation
Rain
Real time
River basins
Rivers
Satellites
Stream discharge
Stream flow
Streamflow forecasting
Weather forecasting
title Design and implementation of an operational multimodel multiproduct real-time probabilistic streamflow forecasting platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20an%20operational%20multimodel%20multiproduct%20real-time%20probabilistic%20streamflow%20forecasting%20platform&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Roy,%20Tirthankar&rft.date=2017-11-01&rft.volume=19&rft.issue=6&rft.spage=911&rft.epage=919&rft.pages=911-919&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2017.111&rft_dat=%3Cproquest_cross%3E1971725885%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-5806aa1d3d7d2ae1f69ac29cfdb4da1114fad14e4f52461e44a1fdb1d78bdd323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1971725885&rft_id=info:pmid/&rfr_iscdi=true