Loading…
The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed
Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigat...
Saved in:
Published in: | Ecosystems (New York) 2017-12, Vol.20 (8), p.1468-1482 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3 |
container_end_page | 1482 |
container_issue | 8 |
container_start_page | 1468 |
container_title | Ecosystems (New York) |
container_volume | 20 |
creator | Motew, Melissa Chen, Xi Booth, Eric G. Carpenter, Stephen R. Pinkas, Pavel Zipper, Samuel C. Loheide, Steven P. Donner, Simon D. Tsuruta, Kai Vadas, Peter A. Kucharik, Christopher J. |
description | Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves. |
doi_str_mv | 10.1007/s10021-017-0125-0 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1972157267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713731372</galeid><jstor_id>48719499</jstor_id><sourcerecordid>A713731372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4soOKd_gA9CwOfOXJI26eMY_hhMVJj6GLLsunV2qSYtsv_ezIr4JOFyx-X7yR3fJDkHOgJK5VWIN4OUgozBspQeJAMQPBY5Kw6_a5YWStDj5CSEDaWQKSEGyct8jWTqyrpDZ5E0JZnhytgdeSSNIzPzhuTVtOjJU2fqqt2RyhFD7qvlJ4bYdmS88pXt6rbzpu6lYY3L0-SoNHXAs588TJ5vrueTu3T2cDudjGep5VK2KTNKAC6ENQupVF5QnnPMhEFOeQFMxkdAZIYqKVBIUExhZjIjVG5hKZEPk8v-33fffHRxJb1pOu_iSA2FZJBJlsuoGvWqlalRV65sWm9sPEvcVrZxWFaxP5bAJY_BIgA9YH0TgsdSv_tqa_xOA9V7v3Xvt45-673fmkaG9UyIWrdC_2eVf6CLHtqEtvG_U4SSUIii4F8_04nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972157267</pqid></control><display><type>article</type><title>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</title><source>Springer Link</source><source>JSTOR Archival Journals</source><creator>Motew, Melissa ; Chen, Xi ; Booth, Eric G. ; Carpenter, Stephen R. ; Pinkas, Pavel ; Zipper, Samuel C. ; Loheide, Steven P. ; Donner, Simon D. ; Tsuruta, Kai ; Vadas, Peter A. ; Kucharik, Christopher J.</creator><creatorcontrib>Motew, Melissa ; Chen, Xi ; Booth, Eric G. ; Carpenter, Stephen R. ; Pinkas, Pavel ; Zipper, Samuel C. ; Loheide, Steven P. ; Donner, Simon D. ; Tsuruta, Kai ; Vadas, Peter A. ; Kucharik, Christopher J.</creatorcontrib><description>Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-017-0125-0</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Agricultural industry ; Agricultural land ; Agricultural watersheds ; Agriculture ; Agrochemicals ; Analysis ; Biomedical and Life Sciences ; Climate change ; Climatic changes ; Climatic conditions ; Computer simulation ; Ecology ; Ecosystem models ; Environmental Management ; Eutrophication ; Fertilizers ; Geoecology/Natural Processes ; Hydrologic models ; Hydrology ; Hydrology/Water Resources ; Indicators ; International economic relations ; Lakes ; Life Sciences ; Management ; Mathematical models ; Original Articles ; Phosphorus ; Plant Sciences ; Precipitation ; Quality control ; Rainfall ; Reduction ; Sediments ; Surface water ; Water ; Water quality ; Zoology</subject><ispartof>Ecosystems (New York), 2017-12, Vol.20 (8), p.1468-1482</ispartof><rights>2017 Springer Science+Business Media New York</rights><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Ecosystems is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</citedby><cites>FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48719499$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48719499$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Motew, Melissa</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Booth, Eric G.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><creatorcontrib>Pinkas, Pavel</creatorcontrib><creatorcontrib>Zipper, Samuel C.</creatorcontrib><creatorcontrib>Loheide, Steven P.</creatorcontrib><creatorcontrib>Donner, Simon D.</creatorcontrib><creatorcontrib>Tsuruta, Kai</creatorcontrib><creatorcontrib>Vadas, Peter A.</creatorcontrib><creatorcontrib>Kucharik, Christopher J.</creatorcontrib><title>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</title><title>Ecosystems (New York)</title><addtitle>Ecosystems</addtitle><description>Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.</description><subject>Agricultural industry</subject><subject>Agricultural land</subject><subject>Agricultural watersheds</subject><subject>Agriculture</subject><subject>Agrochemicals</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Climatic conditions</subject><subject>Computer simulation</subject><subject>Ecology</subject><subject>Ecosystem models</subject><subject>Environmental Management</subject><subject>Eutrophication</subject><subject>Fertilizers</subject><subject>Geoecology/Natural Processes</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Indicators</subject><subject>International economic relations</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Original Articles</subject><subject>Phosphorus</subject><subject>Plant Sciences</subject><subject>Precipitation</subject><subject>Quality control</subject><subject>Rainfall</subject><subject>Reduction</subject><subject>Sediments</subject><subject>Surface water</subject><subject>Water</subject><subject>Water quality</subject><subject>Zoology</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4soOKd_gA9CwOfOXJI26eMY_hhMVJj6GLLsunV2qSYtsv_ezIr4JOFyx-X7yR3fJDkHOgJK5VWIN4OUgozBspQeJAMQPBY5Kw6_a5YWStDj5CSEDaWQKSEGyct8jWTqyrpDZ5E0JZnhytgdeSSNIzPzhuTVtOjJU2fqqt2RyhFD7qvlJ4bYdmS88pXt6rbzpu6lYY3L0-SoNHXAs588TJ5vrueTu3T2cDudjGep5VK2KTNKAC6ENQupVF5QnnPMhEFOeQFMxkdAZIYqKVBIUExhZjIjVG5hKZEPk8v-33fffHRxJb1pOu_iSA2FZJBJlsuoGvWqlalRV65sWm9sPEvcVrZxWFaxP5bAJY_BIgA9YH0TgsdSv_tqa_xOA9V7v3Xvt45-673fmkaG9UyIWrdC_2eVf6CLHtqEtvG_U4SSUIii4F8_04nQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Motew, Melissa</creator><creator>Chen, Xi</creator><creator>Booth, Eric G.</creator><creator>Carpenter, Stephen R.</creator><creator>Pinkas, Pavel</creator><creator>Zipper, Samuel C.</creator><creator>Loheide, Steven P.</creator><creator>Donner, Simon D.</creator><creator>Tsuruta, Kai</creator><creator>Vadas, Peter A.</creator><creator>Kucharik, Christopher J.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20171201</creationdate><title>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</title><author>Motew, Melissa ; Chen, Xi ; Booth, Eric G. ; Carpenter, Stephen R. ; Pinkas, Pavel ; Zipper, Samuel C. ; Loheide, Steven P. ; Donner, Simon D. ; Tsuruta, Kai ; Vadas, Peter A. ; Kucharik, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural industry</topic><topic>Agricultural land</topic><topic>Agricultural watersheds</topic><topic>Agriculture</topic><topic>Agrochemicals</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Climatic conditions</topic><topic>Computer simulation</topic><topic>Ecology</topic><topic>Ecosystem models</topic><topic>Environmental Management</topic><topic>Eutrophication</topic><topic>Fertilizers</topic><topic>Geoecology/Natural Processes</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Indicators</topic><topic>International economic relations</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Original Articles</topic><topic>Phosphorus</topic><topic>Plant Sciences</topic><topic>Precipitation</topic><topic>Quality control</topic><topic>Rainfall</topic><topic>Reduction</topic><topic>Sediments</topic><topic>Surface water</topic><topic>Water</topic><topic>Water quality</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motew, Melissa</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Booth, Eric G.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><creatorcontrib>Pinkas, Pavel</creatorcontrib><creatorcontrib>Zipper, Samuel C.</creatorcontrib><creatorcontrib>Loheide, Steven P.</creatorcontrib><creatorcontrib>Donner, Simon D.</creatorcontrib><creatorcontrib>Tsuruta, Kai</creatorcontrib><creatorcontrib>Vadas, Peter A.</creatorcontrib><creatorcontrib>Kucharik, Christopher J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motew, Melissa</au><au>Chen, Xi</au><au>Booth, Eric G.</au><au>Carpenter, Stephen R.</au><au>Pinkas, Pavel</au><au>Zipper, Samuel C.</au><au>Loheide, Steven P.</au><au>Donner, Simon D.</au><au>Tsuruta, Kai</au><au>Vadas, Peter A.</au><au>Kucharik, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</atitle><jtitle>Ecosystems (New York)</jtitle><stitle>Ecosystems</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>20</volume><issue>8</issue><spage>1468</spage><epage>1482</epage><pages>1468-1482</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10021-017-0125-0</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-9840 |
ispartof | Ecosystems (New York), 2017-12, Vol.20 (8), p.1468-1482 |
issn | 1432-9840 1435-0629 |
language | eng |
recordid | cdi_proquest_journals_1972157267 |
source | Springer Link; JSTOR Archival Journals |
subjects | Agricultural industry Agricultural land Agricultural watersheds Agriculture Agrochemicals Analysis Biomedical and Life Sciences Climate change Climatic changes Climatic conditions Computer simulation Ecology Ecosystem models Environmental Management Eutrophication Fertilizers Geoecology/Natural Processes Hydrologic models Hydrology Hydrology/Water Resources Indicators International economic relations Lakes Life Sciences Management Mathematical models Original Articles Phosphorus Plant Sciences Precipitation Quality control Rainfall Reduction Sediments Surface water Water Water quality Zoology |
title | The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Legacy%20P%20on%20Lake%20Water%20Quality%20in%20a%20Midwestern%20Agricultural%20Watershed&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Motew,%20Melissa&rft.date=2017-12-01&rft.volume=20&rft.issue=8&rft.spage=1468&rft.epage=1482&rft.pages=1468-1482&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-017-0125-0&rft_dat=%3Cgale_proqu%3EA713731372%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972157267&rft_id=info:pmid/&rft_galeid=A713731372&rft_jstor_id=48719499&rfr_iscdi=true |