Loading…

The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed

Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigat...

Full description

Saved in:
Bibliographic Details
Published in:Ecosystems (New York) 2017-12, Vol.20 (8), p.1468-1482
Main Authors: Motew, Melissa, Chen, Xi, Booth, Eric G., Carpenter, Stephen R., Pinkas, Pavel, Zipper, Samuel C., Loheide, Steven P., Donner, Simon D., Tsuruta, Kai, Vadas, Peter A., Kucharik, Christopher J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3
cites cdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3
container_end_page 1482
container_issue 8
container_start_page 1468
container_title Ecosystems (New York)
container_volume 20
creator Motew, Melissa
Chen, Xi
Booth, Eric G.
Carpenter, Stephen R.
Pinkas, Pavel
Zipper, Samuel C.
Loheide, Steven P.
Donner, Simon D.
Tsuruta, Kai
Vadas, Peter A.
Kucharik, Christopher J.
description Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.
doi_str_mv 10.1007/s10021-017-0125-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1972157267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713731372</galeid><jstor_id>48719499</jstor_id><sourcerecordid>A713731372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4soOKd_gA9CwOfOXJI26eMY_hhMVJj6GLLsunV2qSYtsv_ezIr4JOFyx-X7yR3fJDkHOgJK5VWIN4OUgozBspQeJAMQPBY5Kw6_a5YWStDj5CSEDaWQKSEGyct8jWTqyrpDZ5E0JZnhytgdeSSNIzPzhuTVtOjJU2fqqt2RyhFD7qvlJ4bYdmS88pXt6rbzpu6lYY3L0-SoNHXAs588TJ5vrueTu3T2cDudjGep5VK2KTNKAC6ENQupVF5QnnPMhEFOeQFMxkdAZIYqKVBIUExhZjIjVG5hKZEPk8v-33fffHRxJb1pOu_iSA2FZJBJlsuoGvWqlalRV65sWm9sPEvcVrZxWFaxP5bAJY_BIgA9YH0TgsdSv_tqa_xOA9V7v3Xvt45-673fmkaG9UyIWrdC_2eVf6CLHtqEtvG_U4SSUIii4F8_04nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972157267</pqid></control><display><type>article</type><title>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</title><source>Springer Link</source><source>JSTOR Archival Journals</source><creator>Motew, Melissa ; Chen, Xi ; Booth, Eric G. ; Carpenter, Stephen R. ; Pinkas, Pavel ; Zipper, Samuel C. ; Loheide, Steven P. ; Donner, Simon D. ; Tsuruta, Kai ; Vadas, Peter A. ; Kucharik, Christopher J.</creator><creatorcontrib>Motew, Melissa ; Chen, Xi ; Booth, Eric G. ; Carpenter, Stephen R. ; Pinkas, Pavel ; Zipper, Samuel C. ; Loheide, Steven P. ; Donner, Simon D. ; Tsuruta, Kai ; Vadas, Peter A. ; Kucharik, Christopher J.</creatorcontrib><description>Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-017-0125-0</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Agricultural industry ; Agricultural land ; Agricultural watersheds ; Agriculture ; Agrochemicals ; Analysis ; Biomedical and Life Sciences ; Climate change ; Climatic changes ; Climatic conditions ; Computer simulation ; Ecology ; Ecosystem models ; Environmental Management ; Eutrophication ; Fertilizers ; Geoecology/Natural Processes ; Hydrologic models ; Hydrology ; Hydrology/Water Resources ; Indicators ; International economic relations ; Lakes ; Life Sciences ; Management ; Mathematical models ; Original Articles ; Phosphorus ; Plant Sciences ; Precipitation ; Quality control ; Rainfall ; Reduction ; Sediments ; Surface water ; Water ; Water quality ; Zoology</subject><ispartof>Ecosystems (New York), 2017-12, Vol.20 (8), p.1468-1482</ispartof><rights>2017 Springer Science+Business Media New York</rights><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Ecosystems is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</citedby><cites>FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48719499$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48719499$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Motew, Melissa</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Booth, Eric G.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><creatorcontrib>Pinkas, Pavel</creatorcontrib><creatorcontrib>Zipper, Samuel C.</creatorcontrib><creatorcontrib>Loheide, Steven P.</creatorcontrib><creatorcontrib>Donner, Simon D.</creatorcontrib><creatorcontrib>Tsuruta, Kai</creatorcontrib><creatorcontrib>Vadas, Peter A.</creatorcontrib><creatorcontrib>Kucharik, Christopher J.</creatorcontrib><title>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</title><title>Ecosystems (New York)</title><addtitle>Ecosystems</addtitle><description>Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.</description><subject>Agricultural industry</subject><subject>Agricultural land</subject><subject>Agricultural watersheds</subject><subject>Agriculture</subject><subject>Agrochemicals</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Climatic conditions</subject><subject>Computer simulation</subject><subject>Ecology</subject><subject>Ecosystem models</subject><subject>Environmental Management</subject><subject>Eutrophication</subject><subject>Fertilizers</subject><subject>Geoecology/Natural Processes</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Indicators</subject><subject>International economic relations</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Original Articles</subject><subject>Phosphorus</subject><subject>Plant Sciences</subject><subject>Precipitation</subject><subject>Quality control</subject><subject>Rainfall</subject><subject>Reduction</subject><subject>Sediments</subject><subject>Surface water</subject><subject>Water</subject><subject>Water quality</subject><subject>Zoology</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4soOKd_gA9CwOfOXJI26eMY_hhMVJj6GLLsunV2qSYtsv_ezIr4JOFyx-X7yR3fJDkHOgJK5VWIN4OUgozBspQeJAMQPBY5Kw6_a5YWStDj5CSEDaWQKSEGyct8jWTqyrpDZ5E0JZnhytgdeSSNIzPzhuTVtOjJU2fqqt2RyhFD7qvlJ4bYdmS88pXt6rbzpu6lYY3L0-SoNHXAs588TJ5vrueTu3T2cDudjGep5VK2KTNKAC6ENQupVF5QnnPMhEFOeQFMxkdAZIYqKVBIUExhZjIjVG5hKZEPk8v-33fffHRxJb1pOu_iSA2FZJBJlsuoGvWqlalRV65sWm9sPEvcVrZxWFaxP5bAJY_BIgA9YH0TgsdSv_tqa_xOA9V7v3Xvt45-673fmkaG9UyIWrdC_2eVf6CLHtqEtvG_U4SSUIii4F8_04nQ</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Motew, Melissa</creator><creator>Chen, Xi</creator><creator>Booth, Eric G.</creator><creator>Carpenter, Stephen R.</creator><creator>Pinkas, Pavel</creator><creator>Zipper, Samuel C.</creator><creator>Loheide, Steven P.</creator><creator>Donner, Simon D.</creator><creator>Tsuruta, Kai</creator><creator>Vadas, Peter A.</creator><creator>Kucharik, Christopher J.</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20171201</creationdate><title>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</title><author>Motew, Melissa ; Chen, Xi ; Booth, Eric G. ; Carpenter, Stephen R. ; Pinkas, Pavel ; Zipper, Samuel C. ; Loheide, Steven P. ; Donner, Simon D. ; Tsuruta, Kai ; Vadas, Peter A. ; Kucharik, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural industry</topic><topic>Agricultural land</topic><topic>Agricultural watersheds</topic><topic>Agriculture</topic><topic>Agrochemicals</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Climatic conditions</topic><topic>Computer simulation</topic><topic>Ecology</topic><topic>Ecosystem models</topic><topic>Environmental Management</topic><topic>Eutrophication</topic><topic>Fertilizers</topic><topic>Geoecology/Natural Processes</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Indicators</topic><topic>International economic relations</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Original Articles</topic><topic>Phosphorus</topic><topic>Plant Sciences</topic><topic>Precipitation</topic><topic>Quality control</topic><topic>Rainfall</topic><topic>Reduction</topic><topic>Sediments</topic><topic>Surface water</topic><topic>Water</topic><topic>Water quality</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motew, Melissa</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Booth, Eric G.</creatorcontrib><creatorcontrib>Carpenter, Stephen R.</creatorcontrib><creatorcontrib>Pinkas, Pavel</creatorcontrib><creatorcontrib>Zipper, Samuel C.</creatorcontrib><creatorcontrib>Loheide, Steven P.</creatorcontrib><creatorcontrib>Donner, Simon D.</creatorcontrib><creatorcontrib>Tsuruta, Kai</creatorcontrib><creatorcontrib>Vadas, Peter A.</creatorcontrib><creatorcontrib>Kucharik, Christopher J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motew, Melissa</au><au>Chen, Xi</au><au>Booth, Eric G.</au><au>Carpenter, Stephen R.</au><au>Pinkas, Pavel</au><au>Zipper, Samuel C.</au><au>Loheide, Steven P.</au><au>Donner, Simon D.</au><au>Tsuruta, Kai</au><au>Vadas, Peter A.</au><au>Kucharik, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed</atitle><jtitle>Ecosystems (New York)</jtitle><stitle>Ecosystems</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>20</volume><issue>8</issue><spage>1468</spage><epage>1482</epage><pages>1468-1482</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>Decades of fertilizer and manure applications have led to a buildup of phosphorus (P) in agricultural soils and sediments, commonly referred to as legacy P. Legacy P can provide a long-term source of P to surface waters where it causes eutrophication. Using a suite of numerical models, we investigated the influence of legacy P on water quality in the Yahara Watershed of southern Wisconsin, USA. The suite included Agro-IBIS, a terrestrial ecosystem model; THMB, a hydrologic and nutrient routing model; and the Yahara Water Quality Model which estimates water quality indicators in the Yahara chain of lakes. Using five alternative scenarios of antecedent P storage (legacy P) in soils and channels under historical climate conditions, we simulated outcomes of P yield from the landscape, lake P loading, and three lake water quality indicators. Legacy P had a significant effect on lake loads and water quality. Across the five scenarios for Lake Mendota, the largest and most upstream lake, average P yield (kg ha⁻¹) varied by -41 to +22%, P load (kg y⁻¹) by-35 to +14%, summer total P (TP) concentration (mg l⁻¹) by -25 to +12%, Secchi depth (m) by -7 to +3 %, and the probability of hypereutrophy by -67 to +34 %, relative to baseline conditions. The minimum storage scenario showed that a 35% reduction in present-day loads to Lake Mendota corresponded with a 25% reduction in summer TP and smaller reductions in the downstream lakes. Water quality was more vulnerable to heavy rainfall events at higher amounts of P storage and less so at lower amounts. Increases in heavy precipitation are expected with climate change; therefore, water quality could be protected by decreasing P reserves.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10021-017-0125-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-9840
ispartof Ecosystems (New York), 2017-12, Vol.20 (8), p.1468-1482
issn 1432-9840
1435-0629
language eng
recordid cdi_proquest_journals_1972157267
source Springer Link; JSTOR Archival Journals
subjects Agricultural industry
Agricultural land
Agricultural watersheds
Agriculture
Agrochemicals
Analysis
Biomedical and Life Sciences
Climate change
Climatic changes
Climatic conditions
Computer simulation
Ecology
Ecosystem models
Environmental Management
Eutrophication
Fertilizers
Geoecology/Natural Processes
Hydrologic models
Hydrology
Hydrology/Water Resources
Indicators
International economic relations
Lakes
Life Sciences
Management
Mathematical models
Original Articles
Phosphorus
Plant Sciences
Precipitation
Quality control
Rainfall
Reduction
Sediments
Surface water
Water
Water quality
Zoology
title The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Legacy%20P%20on%20Lake%20Water%20Quality%20in%20a%20Midwestern%20Agricultural%20Watershed&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Motew,%20Melissa&rft.date=2017-12-01&rft.volume=20&rft.issue=8&rft.spage=1468&rft.epage=1482&rft.pages=1468-1482&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-017-0125-0&rft_dat=%3Cgale_proqu%3EA713731372%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-2a841eb4cab788690363e54ae303912741e1ee2a0874e471828e5a5a486c1d7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972157267&rft_id=info:pmid/&rft_galeid=A713731372&rft_jstor_id=48719499&rfr_iscdi=true