Loading…

Electrochemical noise of unalloyed steel in mixtures of water‐based binders and pigments

The development of organic coatings for corrosion protection is an elaborate process with a multitude of often interminable investigations and tests of protection properties. Electrochemical methods support the processes of development to a great extent and help to understand mechanisms of action an...

Full description

Saved in:
Bibliographic Details
Published in:Materials and corrosion 2017-12, Vol.68 (12), p.1295-1301
Main Authors: Heyn, A., Rosemann, P., Babutzka, M., Bender, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of organic coatings for corrosion protection is an elaborate process with a multitude of often interminable investigations and tests of protection properties. Electrochemical methods support the processes of development to a great extent and help to understand mechanisms of action and failure. They are usually carried out on applied coating systems with a completed formulation. An examination possibility is presented in this publication that enables the characterization of water‐based coatings with different formulation variations in the liquid (aqueous) state with the aid of electrochemical noise technique. Thus, selection of binders, pigments, and other additives is supported essentially and made more efficient in a very early phase of formulation development. The paper shows that a unique insight into the dynamic processes of a metal in contact with an aqueous coating dispersion is possible using the example of the development of zinc‐free corrosion‐inhibiting pigments for water‐based coatings. In addition, it is presented in which way the results correlate with the performance of applied coatings. The first interaction of metal substrates and water‐based coatings at the time of application is a very critical phase for a coating system. The measurement of electrochemical noise in binder‐pigment‐water‐dispersions is introduced as a new approach for getting a deeper insight in this early stage of interaction. By using this insight, the selection of binders, pigments, and other additives can be made more efficient in a very early phase of formulation development.
ISSN:0947-5117
1521-4176
DOI:10.1002/maco.201709671