Loading…
ASTRA - A Novel interest measure for unearthing latent temporal associations and trends through extending basic gaussian membership function
Time profiled association mining is one of the important and challenging research problems that is relatively less addressed. Time profiled association mining has two main challenges that must be addressed. These include addressing i) dissimilarity measure that also holds monotonicity property and c...
Saved in:
Published in: | Multimedia tools and applications 2019-02, Vol.78 (4), p.4217-4265 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Time profiled association mining is one of the important and challenging research problems that is relatively less addressed. Time profiled association mining has two main challenges that must be addressed. These include addressing i) dissimilarity measure that also holds monotonicity property and can efficiently prune itemset associations ii) approaches for estimating prevalence values of itemset associations over time. The pioneering research that addressed time profiled association mining is by J.S. Yoo using Euclidean distance. It is widely known fact that this distance measure suffers from high dimensionality. Given a time stamped transaction database, time profiled association mining refers to the discovery of underlying and hidden time profiled itemset associations whose true prevalence variations are similar as the user query sequence under subset constraints that include i) allowable dissimilarity value ii) a reference query time sequence iii) dissimilarity function that can find degree of similarity between a temporal itemset and reference. In this paper, we propose a novel dissimilarity measure whose design is a function of product based gaussian membership function through extending the similarity function proposed in our earlier research (G-Spamine). Our approach, MASTER (Mining of Similar Temporal Associations) which is primarily inspired from SPAMINE uses the dissimilarity measure proposed in this paper and support bound estimation approach proposed in our earlier research. Expression for computation of distance bounds of temporal patterns are designed considering the proposed measure and support estimation approach. Experiments are performed by considering naïve, sequential, Spamine and G-Spamine approaches under various test case considerations that study the scalability and computational performance of the proposed approach. Experimental results prove the scalability and efficiency of the proposed approach. The correctness and completeness of proposed approach is also proved analytically. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-017-5280-y |