Loading…
Subsonic flow past localised heating elements in boundary layers
The problem of subsonic flow past micro-electro-mechanical-system-type (MEMS-type) heating elements placed on a flat surface, where the MEMS devices have hump-shaped surfaces, is investigated using triple-deck theory. The compressible Navier–Stokes equations supplemented by the energy equation are c...
Saved in:
Published in: | Journal of fluid mechanics 2017-06, Vol.821, Article R2 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of subsonic flow past micro-electro-mechanical-system-type (MEMS-type) heating elements placed on a flat surface, where the MEMS devices have hump-shaped surfaces, is investigated using triple-deck theory. The compressible Navier–Stokes equations supplemented by the energy equation are considered in the limit that the Reynolds number is large. The triple-deck problem is formulated, and the linear and nonlinear analysis and results are presented. The current work is a generalisation of the problem discussed by Koroteev & Lipatov (J. Fluid Mech., vol. 707, 2012, pp. 595–605; Z. Angew. Math. Mech., vol. 77, 2013, pp. 486–493), where the MEMS devices have flat-shaped surfaces. The results show that the hump-shaped heating elements enhance large drops in pressure, and peaks and troughs in the skin friction over the centre of the hump compared with the flat-shaped devices, which may be useful for controlling the flow. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2017.277 |